首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we assess the signatures of multi-grain averaging effects for a series of sedimentary samples taken from the archaeological site of Hotel California, Atapuerca, Spain. We focus on the special case of equivalent dose (De) measurements made on single-grain discs that contain more than one quartz grain in each of the individual grain-hole positions with the aims of (i) providing insight into the nature and extent of averaging effects in very small multi-grain aliquots of sedimentary quartz, and (ii) assessing the suitability of ‘pseudo’ single-grain De measurements for this particular dating application. Pseudo single-grain OSL measurements made on standard discs loaded with 90–100 μm grains (equivalent to ~30 grains per hole) yield significantly different De distribution characteristics and finite mixture model (FMM) burial dose estimates compared with single-grain OSL measurements. Grains with aberrant luminescence behaviours, which are routinely rejected during single-grain analysis, exert strong averaging effects on the pseudo single-grain and multi-grain aliquot De distributions. Grain-hole averaging effects arising from pseudo single-grain measurements also give rise to ‘phantom’ dose components and are apt to provide bias assessments of quartz signal characteristics and grain type classifications. Though this is a site-specific study, it serves as a cautionary note for interpretations of other pseudo single-grain OSL and De datasets – particularly those obtained from measurements of discs containing several tens of grains per hole and those derived from complex depositional environments. The use of custom single-grain discs drilled with smaller sized grain holes is recommended as a means of limiting grain-hole averaging effects when dealing with very fine (<180 μm) sediments.  相似文献   

2.
Luminescence dating of individual sand-sized grains of quartz is a well-established technique in Quaternary geochronology, but the most ubiquitous mineral on the surface of the Earth—feldspar—has received much less attention at the single-grain level. In this study, we estimated single-grain equivalent dose values and infrared stimulated luminescence (IRSL) ages for K-rich feldspar (KF) grains from a fluvial sample underlying Youngest Toba Tuff (YTT) deposits in north-central India, and compared these ages (corrected for anomalous fading) with those obtained from individual grains of quartz from the same sample. Both minerals have broadly similar single-grain age distributions, but both are greatly overdispersed and most grains have ages substantially younger than the expected age of the YTT deposit (~74 ka). Almost half (45%) of KF grains used for age calculation have fading rates statistically consistent with zero, but the age distribution of these grains is as dispersed as that of the entire population. We obtained a similar distribution of ages calculated for 51 grains using their individually measured internal K contents, which exhibited only minor grain-to-grain variation. Given the lack of dependency of single-grain ages on the measured fading rates and internal K contents, and the overall adequacy of bleaching of grains collected from a sandbar in the modern river channel, we consider the spread in ages is most likely due to mixing, at the time of deposition and after the YTT event, of potentially well-bleached fluvially-transported sediments with older grains derived from slumping of riverbank deposits. Some spread may also be due to natural variations in the IRSL properties of individual KF grains.  相似文献   

3.
The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved.However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution. This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally, it is an implicit assumption in such analysis that any over-dispersion is not significantly dose dependent.In this study we have undertaken laboratory investigations of the dose dependency of over-dispersion using a well-bleached modern sample with an average measured dose of 36 ± 3 mGy. This sample was prepared as heated (750 °C for 1 h), bleached and untreated portions which were then given uniform gamma doses ranging from 100 mGy to 208 Gy. We show that for these samples the relative laboratory over-dispersion is not constant as a function of dose and that the over-dispersion is smaller in heated samples. We also show that the dim grains in the distributions have a greater over-dispersion than the bright grains, implying that insensitive samples will have greater values of over-dispersion than sensitive samples.  相似文献   

4.
When dating older sedimentary deposits using quartz, there are no unambiguous methods for identifying the presence of incomplete bleaching. Current statistical analysis of dose distributions depends entirely on the assumption that incomplete bleaching and mixing are the main causes of any excess dispersion in the distribution; the only existing way to test this assumption is using independent age control. Here we suggest a new approach to this question, based on the differential bleaching rates of quartz and feldspar luminescence signals. We first present data that confirm the differences in relative bleaching rates of quartz optically stimulated luminescence (OSL) and feldspar luminescence stimulated at 50 °C by infrared light (IR50) and feldspar luminescence stimulated at 290 °C by infrared light after a stimulation at 50 °C (pIRIR290), and use recently deposited samples to determine the likely significance of the difficult-to-bleach residual feldspar signals in non-aeolian samples. For a set of mainly Late Pleistocene non-aeolian sediments, large aliquot quartz doses are then used to predict feldspar doses (based on a knowledge of the sample dose rates). The differences between observed and predicted feldspar doses as a function of the quartz dose, combined with a conservative assumption concerning the relative feldspar and quartz residual signals after natural bleaching prior to deposition, are used to identify those samples for which the quartz is very likely to be well bleached (20 out of 24). Two of these apparently well-bleached samples are then examined using single-grain quartz dose distributions; one of these is consistent with the well-bleached hypothesis, and one indicates poor bleaching or a multi-component mixture. However, independent age control makes it clear that the large aliquot data are more likely to be correct. We conclude that a comparison of quartz and feldspar doses provides a useful independent method for identifying well-bleached quartz samples, and that it is unwise to apply statistical models to dose distributions without clear evidence for the physical origins of the distributions.  相似文献   

5.
In this paper we use a recently developed radioluminescence (RL) attachment to the Risø TL/OSL reader to test the InfraRed-RadioFluorescence (IR-RF) dating method applied to K-feldspar rich extracts from our known-age archive samples. We present experiments to characterise the instrument performance and to test the reproducibility of IR-RF measurements. These experiments illustrate the high sensitivity and dose rate of our RL system, the negligible influence of the turntable movement on IR-RF signals and the effectiveness of the built in 395 nm LED at bleaching IR-RF signals. We measure IR-RF ages on a set of samples with independent age control using a robust analytical method, which is able to detect any possible sensitivity change. Our IR-RF ages do not agree well with the independent age control; the ages of the younger samples (20–45 ka) are significantly over-estimated while the ages of the older samples (~130 ka) are significantly under-estimated. Experiments are undertaken to investigate this disagreement and our results indicate that they can most likely be explained by 1) the difficulty of defining the correct bleaching level prior to regeneration measurements, 2) signal instability, 3) sensitivity changes between the additive dose and regenerative dose measurements, or a combination of these three factors.  相似文献   

6.
Pulsed OSL is applied to nine fine-grained sediment samples from Sichuan province, China, using stimulating pulses of 10 μs on and 240 μs off, with an infrared exposure prior to each OSL measurement. Comparison of fading rates between pulsed and non-pulsed signals, the latter also obtained with a preceding IR exposure, shows that fading is significant for mainly the non-pulsed signals. Presence of a pulsed IRSL and the magnitudes of b-value to correct for lower alpha efficiency suggest that pulsing does not fully remove a significant feldspar signal, only a fading component. Comparison with ages of quartz extracts shows that pulsed OSL ages are consistent, while CW-OSL ages are slightly older and CW-IRSL ages are much older. The older ages suggest a less well-bleached feldspar component.  相似文献   

7.
Archaeological mortars are more convenient and much more representative for the chronology of buildings than brick or wood constructions that can be re-used from older buildings. Before dating unknown samples of mortars, further investigation of OSL from mortars is required and the most efficient methodology needs to be established. In this study we compared the ages obtained by OSL dating of quartz extracted from mortars of the Roman amphitheatre Palais-Gallien in Bordeaux with independent age information.Resetting of the OSL signal occurred during the preparation of mortar when grains of sand (quartz) were extracted and mixed with lime and water. The mortar was subsequently hidden from light by embedding within the structure which is the event to be dated.Various factors contribute to uncertainties in the age determination. The frequency of measured equivalent doses reveals a large scattering. Optical bleaching of certain grains can be partial due to the short duration of the exposure to light. We worked with the single grain technique in order to find and select the grains that were sufficiently exposed to daylight. To determine the average equivalent dose, we tried three different approaches: a calculation of an arithmetic mean and one following either the central age model or the 3-parameter minimum age model, the latter turned out to be the only relevant way to evaluate the experimental data. The proportion of grains included in the calculation of the average equivalent dose represents 2.7–4.7 % of the overall analysed grains. The results obtained for the three out of four samples are approaching the expected age, however, the minimum doses and the corresponding ages are significantly over-estimated in case of two samples.The studied material is very coarse, which causes heterogeneity of irradiation at the single grain scale, and contributes to a dispersion of equivalent doses. Different analytical methods (scanning electron microscopy with energy dispersive X-ray spectroscopy cartography, Beta-radiography imaging, inductively coupled plasma mass spectrometry) were employed to demonstrate the presence of this phenomenon.Despite the extremely large proportion of high equivalent doses in equivalent dose distributions, there is an apparent presence of well-bleached grains at the beginning of equivalent dose distributions. The study shows the potential of dating mortars by single grain OSL.  相似文献   

8.
Laboratory storage and preheating experiments were carried out to study anomalous fading of infrared stimulated luminescence (IRSL) signals derived from polymineral grains extracted from Chinese loess. Results of laboratory storage at 150 °C and higher temperature preheating experiments showed that such thermal treatments could lessen the effect of fading and indicated the presence of both thermal and non-thermal fading. In addition, the behavior of natural fading over the past 9–170 ka was investigated. By comparing with independent ages (obtained from fine-grain quartz using the optically stimulated luminescence (OSL) signal for the past 130 ka and the thermally transferred OSL (TT-OSL) signal in the age range of 130–170 ka) for the same samples, equivalent doses obtained from the IRSL signals were found to be underestimated by different amounts since the penultimate glacial; there was a linear dependence when the age underestimation was plotted against geological time.  相似文献   

9.
For luminescence dating to be an accurate absolute dating technique it is very important that we are able to deliver absolutely known radiation doses in the laboratory. This is normally done using a radiation source (alpha, beta, X-ray) calibrated against an absolutely known reference source. Many laboratories have used the various different batches of Risø calibration quartz for the calibration of beta and X-ray sources, but these have been largely undescribed. Here we describe in detail the preparation and luminescence characteristics of a new quartz standard, based on a North Sea beach sand collected from south-western Denmark (Rømø). Two grain sizes (4–11 μm and 180–250 μm) have been examined in detail. These were pre-treated (annealed, dosed and annealed again) to sensitise and stabilise the luminescence signals before being given an absolutely known gamma dose from a point 137Cs source in scatter-free geometry. The luminescence characteristics are described; the very intense blue-light stimulated signal is dominated by the fast OSL component and the IR-stimulated signal is negligible. The material is shown to be suitable for measurement using SAR, and the dose recovery ratio is indistinguishable from unity with a standard deviation of <2% for multi-grain aliquots. The material is also shown to be suitable for single-grain calibration, with >80% of the grains giving a useful signal. Although there is an unexplained dispersion in our calibration data of ∼3% (which we cannot attribute to instrument variability), we nevertheless conclude that this material is very suitable for transferring absolute known doses from a standardised gamma source to in-built irradiation sources.  相似文献   

10.
When using a single-aliquot regenerative dose (SAR) protocol for luminescence dating of sedimentary quartz grains, the fundamental assumption is that the sensitivity of the optically stimulated luminescence (OSL) produced by the regenerative doses can be monitored by their following test dose OSL response. Using well-bleached coarse quartz grains, OSL production in a SAR protocol was studied in detail when dose response curves were constructed using both single and multiple aliquot regenerative dose procedures. During application of the SAR protocol, two preheats are applied, each ahead of an OSL measurement that is produced by the regenerative dose and test dose, respectively. It is shown that sensitivity changes caused by heating were well corrected for using the OSL response to the test dose. However, these preheats are shown to result in thermally stimulated OSL signals that contribute both to the OSL response from the regenerative doses used to construct the dose response curve and to the OSL response from the test dose used to monitor OSL sensitivity changes as the quartz grains are repeatedly measured. A simple test is proposed to identify the contribution of the latter signal.  相似文献   

11.
Optically Stimulated Luminescence (OSL) dating based on the fast component is now widely used to establish chronologies of sedimentary deposits. Since this component saturates at a relatively low dose, the method is limited to the dating of Late Pleistocene quartz samples. Consequently, dating events beyond this limit is a key challenge. In this context the use of the TT-OSL signal which exhibits a high doses saturation level offers the potential to extend the age range of the method. Since the promising study of Wang et al. (2006b), in which a 780 ka age validated by palaeomagnetism data was reported for a Chinese loess sample, several studies focused on establishing a SAR TT-OSL dating protocol. They suggested applying different kinds of heat treatment at the end of a SAR cycle, as well as two normalisation procedures. The aim of this study was to test the reliability of these protocols for a loess-like Middle Pleistocene sample for which the expected De is known approximatively. We tested four published SAR protocols by implementing the dose recovery tests on artificially bleached quartz aliquots. The results obtained showed a systematic overestimation of the recovered doses and revealed high sensitivity changes between the first (natural) and the following cycles. It is believed that this behaviour is a consequence of the thermal treatment applied at the end of each SAR cycle which is necessary to empty the hard-to-bleach TT-OSL traps. Neither OSL nor TT-OSL signal test dose responses proved suitable to correct this sensitivity change.  相似文献   

12.
《Radiation measurements》2007,42(2):190-197
An optically stimulated luminescence (OSL) age obtained from a Japanese tephra using quartz phenocrysts severely underestimated the known age. The characteristics of the OSL signals were investigated in order to understand the cause of the underestimation; the main OSL component of volcanic quartz has a thermodynamic lifetime of about 1700 years at room temperature, and it also seems to fade anomalously (i.e. athermally). Measurement of conventional red thermoluminescence (RTL) using a Ga–As photomultiplier tube was difficult due to the presence of a strong thermal background, although RTL gave an age consistent with the independent age. Furthermore, red isothermal TL (RITL) at 380 °C allowed the RTL signal to be separated from to the thermal background, and RITL ages of three volcanic quartz samples show good agreement with independent ages.  相似文献   

13.
《Radiation measurements》2009,44(3):232-238
A flow-through Geiger-Müller pancake electron detector attachment has been fitted to a standard Risø TL/OSL reader enabling optically stimulated electrons (OSE) to be measured simultaneously with optically stimulated luminescence (OSL). Using this detector, OSE and OSL measurements from natural quartz samples are studied to examine the possible use of OSE as a chronometer. First the relative variability in OSE and OSL growth curve shapes and the effect of preheat on these are presented, and from these curves, conclusions are drawn concerning the charge movement in natural quartz. Secondly, a dose recovery test shows that OSE can successfully recover a laboratory dose of 300 Gy given before any laboratory thermal treatment, for preheating temperatures between 160 and 260 °C. Furthermore, for the first time natural OSE decay curves are detected and these signals are used to estimate a burial dose using the single-aliquot regenerative-dose (SAR) procedure. Finally, a comparative study of the equivalent doses estimated using both OSE and OSL from 10 quartz samples are presented, and it is shown that OSE has a significant potential in retrospective dosimetry.  相似文献   

14.
Despite the general expectation that optically stimulated luminescence (OSL) growth should be described by a simple saturating exponential function, an additional high dose component is often reported in the dose response of quartz. Although often reported as linear, it appears that this response is the early expression of a second saturating exponential. While some studies using equivalent doses that fall in this high dose region have produced ages that correlate well with independent dating, others report that it results in unreliable age determinations. Two fine grain sedimentary quartz samples that display such a response were used to investigate the origin of this additional high dose component: three experiments were conducted to examine their dose–response up to >1000 Gy. The high dose rates provided by laboratory irradiation were found not to induce a sensitivity change in the response to a subsequent test dose, with the latter not being significantly different from those generated following naturally acquired doses. The relative percentage contributions of the fast and medium OSL components remained fixed throughout the dose–response curve, suggesting that the electron traps that give rise to the initial OSL do not change with dose. An attempt was made to investigate a change in luminescence centre recombination probability by monitoring the depletion of the ‘325 °C’ thermoluminescence (TL) during the optical stimulation that would result in depletion of the OSL signal. The emissions measured through both the conventional ultraviolet (UV), and a longer wavelength violet/blue (VB) window, displayed similar relative growth with dose, although it was not possible to resolve the origin of the VB emissions. No evidence was found to indicate whether the additional component at high doses occurs naturally or is a product of laboratory treatment. However, it appears that these samples display an increased sensitivity of quartz OSL to high doses that is not recorded by the sensitivity to a subsequent test dose, and which results in a change in the sensitivity-corrected dose–response curve.  相似文献   

15.
The dependence of the equivalent dose (De) on the temperature used at stimulation when the standard OSL dating protocol (SAR) is applied has been investigated for sediment quartz samples. A considerable change in this value appears in the temperature region from 80 to 140 °C that is known for high complexity in OSL processes in quartz. Our observations suggest that the variation in the obtained results at least partly is caused by the laboratory procedure used when the natural OSL signal is measured. Directions for further investigations concerning this undesirable effect are indicated.  相似文献   

16.
We applied zircon fission-track analysis to outcrop and borehole samples to study the Mesozoic cooling history of the Bachu Uplift, the Central Uplift of the Tarim Basin. Zircon fission-track (ZFT) ages of 182 Ma – 249 Ma are younger than the sample depositional ages indicating substantial post burial thermal annealing and can effectively reveal cooling events in the Bachu Uplift. The strong correlation between single grain ZFT age and U content indicates that most of the zircon grains represent ages that have been partially annealed and so the age is not directly indicative of the time of cooling. The youngest ZFT age populations with modal peak ages of 151 ± 8 Ma (Well HT1 samples), 126 ± 6 Ma (Well T1 samples) and 192 ± 10 Ma (Xiaohaizi Reservoir profile samples) from the decomposition of the ZFT single-grain ages represent the onset of cooling events in the Bachu Uplift, which were related to the collisions of the Qiangtang Terrane and Lhasa Block with the southern margin of the Eurasia continent, respectively. This study provides new insights into the tectonic and sedimentary evolution of the Tarim Basin and even Central Asia by constraining the higher temperature (c. 250–180 °C) part of the basin thermal history.  相似文献   

17.
An optical dating study of some quartzose sediments from northern and southern Australia, north Africa and north-western Europe has revealed that palaeodose (P) underestimates of 10–40% are obtained when an extended-duration preheat of 160°C for 16 h is used. For these samples in the 0–60 ka age range, a preheat of 220°C for 5 min produces the correct P, as inferred from the concordance with thermoluminescence (TL) palaeodose determinations on the same sedimentary sample or on burnt flint. Independent support for use of the 220°C preheat is given by the agreement between optical ages younger than 30 ka and 14C age determinations on associated charcoal. The deleterious effect of the 160°C preheat is illustrated by growth curves of optically stimulated luminescence (OSL) vs added dose. These curves show that the 160°C preheat induces a dose-dependent increase in sample sensitivity, which may be related to activation of the pre-dose mechanism. The 160°C preheat also causes low-dose supralinearity, although the supralinearity correction is insufficient to reduce significantly the degree of P underestimation. A normalization method based on preheat-induced sensitivity changes of the 110°C TL peak, albeit limited by saturation effects, warrants further investigation.  相似文献   

18.
In this study, the optically stimulated luminescence dating technique was used to determine the time of deposition of alluvial sediment samples from the Türko?lu-Antakya segment of the East Anatolian Fault System (EAFS) in Turkey. The double-single aliquot regenerative dose protocol on fine grain samples was used to estimate equivalent doses (De). Annual dose rate was computed using elemental concentration of uranium (U) and thorium (Th) determined by using thick-source alpha counting and potassium (K) concentrations using X-ray fluorescence and/or atomic absorption spectroscopy. The environmental dose was measured in situ using α-Al2O3:C chips inside plastic tubes for a year. The two different bulk sediment samples collected from the Islahiye trench yielded ages of 4.54?±?0.28 and 2.91?±?0.23?ka. We also obtained a 2.60?±?0.18?ka age for the alluvial deposit in the K?ranyurdu trench and 2.31?±?0.14?ka age for an excavation area called Malzeme Oca??. These ages were consistent with the corresponding calibrated Carbon-14 (14C) ages of the region. The differences between the determined ages were insufficient to clearly distinguish the disturbance event from the effects of bioturbation, biological mixing, or other sources of De variation in the region. They provide a record of alluvial aggradation in the region and may determine undocumented historical earthquake events.  相似文献   

19.
Multi-aliquot (MA) thermoluminescence (TL) has been used little since the advent of modern single-aliquot-regenerative-dose (SAR) sediment dating methods for both quartz and feldspar. However, for dating unheated feldspar-bearing sediments older than 100–200 ka, MA TL can still be useful. To improve precision in burial-dose estimation from TL, a post-bleaching regenerative-dose procedure is beneficial. However, the long-known regenerative-dose TL sensitivity changes cause significant age under-estimation in such MA TL. Here a practical procedure is demonstrated to correct for this post-bleaching sensitivity change. Two samples of fine grain, polymineral loess having independent ages of ∼130 ka and ∼350 ka are employed with the use of the SLIDE (combined additive-dose and regenerative-dose responses) procedure to show that not only accuracy but improved precision can be attained with use of this practical procedure. The procedure employs an operational definition of laboratory-dose sensitivity change with respect to a second-glow TL signal, and corrects for the sensitivity change as a function of laboratory dose and of glowcurve temperature.  相似文献   

20.
《Radiation measurements》2007,42(3):370-379
We determine the burial dose in three known-age incompletely bleached fluvial samples using single grains of quartz. Estimation of burial dose in incompletely bleached samples requires that the characteristics of the well-bleached part of the distribution are known in order to distinguish between well-bleached and poorly bleached grains. It is especially important to investigate if the uncertainties assigned to individual estimates of dose adequately describe the observed variability in well-bleached dose distributions. We investigate this by quantifying the over-dispersion in laboratory-bleached and gamma-irradiated samples. We show that there is a linear relationship between the over-dispersion and the mean dose. Knowing this uncertainty relationship enables us to estimate the burial dose by comparing the predicted uncertainty on the running mean with that calculated from actual dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号