首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了寻求一种更加适宜测定土壤中汞含量的测试方法,将检出限低、精密度高的冷原子吸收光谱法与便捷、高效的王水水浴消解土壤处理方式相结合,建立了王水消解-冷原子吸收光谱法测定土壤中汞。通过测定方法的线性相关性、方法检出限、准确度、精密度、加标回收率,并与原子荧光光谱法进行对比实验来评价该方法的有效性。王水消解-冷原子吸收光谱法在汞质量浓度0.0~1.0μg/L范围内线性良好,相关系数可以达到0.999 9,方法检出限为0.000 75mg/kg,土壤标准样品测试的相对标准偏差为4.0%~10.7%,实际样品加标回收率分别为93%~104%。采用原子荧光光谱法进行对比测试,原子荧光光谱法的方法检出限为0.002 5 mg/kg,相对标准偏差为4.8%~13.5%,加标回收率为104%~107%。结果表明,对于王水水浴消解土壤的方法不仅适用于原子荧光光谱法测定汞含量,同样可以应用于冷原子吸收光谱法中。所建立的王水消解-冷原子吸收光谱法具有更低的检出限,更优的准确度和精密度,有利于提高土壤样品测试的工作效率,值得推广。  相似文献   

2.
土壤和沉积物的结构特点决定了全硼分析时存在消解不完全、易挥发损失等问题,为了提高全硼检测的效率和可靠性,利用微波消解仪对土壤和沉积物样品进行消解,选择分析谱线为208.957 nm,比较了不同酸体系消解的处理效果,并优化了赶酸温度,建立了一种四酸微波消解结合电感耦合等离子体发射光谱(ICP-OES)法测定土壤和沉积物中全硼含量的方法。在最优条件下,全硼含量在0.01~1.00 mg/L浓度范围内具有良好的线性关系,线性相关系数大于0.999,方法检出限为0.7 mg/kg,回收率为89.3%~96.5%,相对标准偏差为1.1~3.0%。方法可为土壤和沉积物中全硼的含量测定提供参考。  相似文献   

3.
为了寻求一种更加适宜测定土壤中汞含量的测试方法,将检出限低、精密度高的冷原子吸收光谱法与便捷、高效的王水水浴消解土壤处理方式相结合,建立了王水消解-冷原子吸收光谱法测定土壤中汞。通过测定方法的线性相关性、方法检出限、准确度、精密度、加标回收率,并与原子荧光光谱法进行对比实验来评价该方法的有效性。王水消解-冷原子吸收光谱法在汞质量浓度0.0~1.0μg/L范围内线性良好,相关系数可以达到0.9999,方法检出限为0.00075 mg/kg,土壤标准样品测试的相对标准偏差为4.0%~10.7%,实际样品加标回收率分别为93%~104%。采用原子荧光光谱法进行对比测试,原子荧光光谱法的方法检出限为0.0025 mg/kg,相对标准偏差为4.8%~13.5%,加标回收率为104%~107%。结果表明,对于王水水浴消解土壤的方法不仅适用于原子荧光光谱法测定汞含量,同样可以应用于冷原子吸收光谱法中。所建立的王水消解-冷原子吸收光谱法具有更低的检出限,更优的准确度和精密度,有利于提高土壤样品测试的工作效率,值得推广。  相似文献   

4.
多晶硅中硼含量的密闭消解-ICP-AES法测定   总被引:1,自引:0,他引:1  
采用恒压密闭消解的方法分解多晶硅样品,电感耦合等离子体原子发射光谱测定多晶硅样品中的硼含量.探讨了酸及络合剂的类型与用量对硼含量测定的影响,优化后的实验条件为:消解体系为2 mL HF+2 mL H2O+0.6 mL HNO3, 络合剂为0.30 mL甘露醇溶液(2.5 g/L),稀释剂为0.3 mol/L的硝酸.在最佳实验条件下,硼元素的回收率为91% ~95%,相对标准偏差均小于5.0%.  相似文献   

5.
建立了同时测定土壤中硼和硫元素含量的封闭溶样-电感耦合等离子体发射光谱法。以HCl-HNO3-HF-H3PO4混合酸为消解液,经封闭溶样进行样品消解。对消解体系、溶样时间和赶酸温度等条件进行了优化,并配制添加磷酸的标准工作溶液进行基体匹配,成功消除了基体效应带来的系统误差。采用了氩气吹扫光室,避免空气以及水蒸气对紫外光的吸收,增强待测元素硫的强度,采用电感耦合等离子体发射光谱法同时测定土壤中的全硼和全硫。硼、硫的质量浓度在0~10 mg/L范围内与光谱强度线性关系良好,线性相关系数均大于0.999 1,硼的检出限为0.7 mg/kg,硫的检出限为2.5 mg/kg。硼、硫测定结果的相对标准偏差分别为1.0%~5.7%和1.7%~7.9%(n=7),相对误差分别为-10.0%~6.2%和-7.5%~10.6%。该方法操作简便、分析快速,满足第三次全国普查全程质量控制技术规范要求,可用于土壤中全硼和全硫的分析。  相似文献   

6.
建立电感耦合等离子体原子发射光谱法同时测定土壤中铜、锌、镍、铬的含量。在土壤样品中分步加入盐酸、硝酸、氢氟酸,电热板加热消解,将土壤标准物质GSS–17,GSS–22,GSS–8,GSS–27与样品按相同的方法处理绘制工作曲线。铜、锌、镍、铬的分析波长分别为327.39,206.20,231.60,267.72 nm。在一定的质量浓度范围内工作曲线表现出良好的线性关系,相关系数均大于0.999,4种元素的方法检出限分别为0.4,0.5,0.3,0.6 mg/kg。采用土壤标准物质GSS–26,GSS–20,GSS–16对方法准确度进行验证,测定值与标准值基本一致,样品加标回收率为82.3%~107.0%,测定结果的相对标准偏差为1.58%~4.68%(n=8)。该方法检出限、准确度和精密度均满足检测要求,可用于快速准确检测批量土壤样品中的重金属含量。  相似文献   

7.
化妆品样品采用微波消解法处理,用电感耦合等离子体原子发射光谱法测定样品溶液中的硼酸和硼酸盐含量。选择钇元素作为内标元素,选择波长249.678nm谱线作为硼的分析线。硼的质量浓度在1.0mg.L-1以内与其发射强度呈线性关系,方法的检出限(3s)为0.002mg.L-1。方法用于分析了几类化妆品样品,回收率在95.2%~100%之间,测定值的相对标准偏差(n=10)在2.4%~3.8%之间。  相似文献   

8.
建立聚乙烯离心管石墨消解-电感耦合等离子体光谱仪测定土壤中硼含量的方法。将土壤样品风干,粉碎至粒径不大于150μm,称量0.1 g土壤样品于50 mL离心管中,加入3 mL盐酸-硝酸-氢氟酸混合液(体积比为1∶1∶1)作为消解试剂,在石墨消解炉中于105℃消解45 min,将消解溶液静置至室温,用去离子水定容至50 mL,取上清液,采用电感耦合等离子体光谱法进行测定。硼的质量浓度在0~2.5μg/mL范围内与光谱强度的线性关系良好,线性方程为y=97 952x-326.14,相关系数为0.999 6,方法检出限为1.0 mg/kg。用该方法对国家标准物质进行测定,测定结果的相对标准偏差为0.79%~1.72%(n=12),样品加标回收率为99.1%~100.7%。  相似文献   

9.
建立了ICP-OES法测定铍盐中痕量硼的分析方法。铍盐样品采用HNO_3超声溶解后,直接测定。经硼全谱分析,B 249.773 nm和B 249.677 nm受铍干扰严重,无法使用。B 182.641 nm和B 208.959 nm可用于高纯铍盐中B含量的分析,但B 182.641 nm不能用于硫含量高的铍盐样品。B 182.641 nm和B 208.959 nm的检出限分别为0.12 mg/kg和0.17 mg/kg,相对标准偏差小于2.8%,满足核纯级铍盐中痕量硼的分析需求。采用铍盐实际样品对比了标准加入法和外标法的测量差异,结果显示,使用HNO_3(1+19)基体的外标校正溶液,测量结果明显低于标准加入法,相对偏差在-7.5%~-40%之间,不建议使用。  相似文献   

10.
提出了用电感耦合等离子体质谱法(ICP-MS)测定高纯硅中痕量硼.高纯硅样品在密闭消解罐中用稍酸及氢氟酸混合酸进行微波加热消解,所得溶液用于ICP-MS测定其中的硼量,对基体和质谱干扰做了试验.质谱测定中选用铍作为内标以补偿信号漂移和基体效应,对样品的微波消解参数及测定时仪器的工作条件做了系统试验,并选定了优化的条件,所选用硼的同位素11B和12B均不受其它同量异位素及多原子离子等的质谱重叠干扰.对方法的回收率及精密度做了试验,所得结果为11B的回收率在98%~110%之间,12B的回收率在96%~107%之间,相对标准偏差(n=8)则依次为2.9%和2.8%,测得方法的检出限为4 ng·L-1(11B)和8 ng·L-1(12B).  相似文献   

11.
探讨了电感耦合等离子体发射光谱法(ICP-AES)测定镍基钎料中硼的分析条件.试样经王水低温溶解,然后高温发硫酸烟,选择182.641 nm作为分析谱线,同时采用基体匹配法配制标准样品,不仅有效降低了基体效应,同时解决了无标校正的问题,校准曲线的线性范围为0~0.06 mg/mL,相关系数为0.999 98.方法应用于实际样品分析,方法检出限为3×10^(-5)mg/mL(n=11),方法相对标准偏差为0.32%~0.65%,回收率为99.2%~100.6%.  相似文献   

12.
采用传统分析仪器测定汞元素,需要对样品进行化学消解,存在操作繁杂、效率低以及易交叉污染等问题。故建立了电热蒸发-直接进样-HGA-100测汞仪测定土壤以及沉积物中汞的方法,无需对样品进行化学前处理,降低环境污染。通过优化HGA-100测汞仪参数条件,汞质量浓度在0~20ng以及20~200ng,相关系数优于0.998,准确称量样品0.05g(精确至0.000 1g),方法检出限为0.5μg/kg,相对标准偏差1.6%~4.6%,加标回收率在90.1%~100%。方法用于对土壤和沉积物标准物质测定,结果与标准值相符。方法高效、准确,可用于测定土壤以及沉积物中的汞。  相似文献   

13.
土壤样品经微波消解,在优化的条件下,用碘化钾―甲基异丁基甲酮萃取,采用火焰原子吸收光谱法测定其中的铅。结果表明,在盐酸质量分数为1%~2%,萃取时间为2 min,平衡时间为15 min,样品中的铅能被定量萃取。方法检出限为0.1 mg/kg。方法用于土壤标准样品测定,测定值与标准值相符,相对标准偏差为1.2%~1.4%,相对误差为0.8%~2.5%。实际土壤样品的测定结果显示,回收率为99.8%~100.4%。  相似文献   

14.
为了快速获得稻米及其植株器官、环境土壤等系列相关样品中总汞的含量,运用直接测汞仪测量了稻米及其植株器官、环境土壤等系列相关样品中总汞含量,建立了一种快速检测稻米及其植株器官、环境土壤中总汞的方法.优化了仪器的各项参数,最佳仪器条件为裂解温度为650℃保持40 s,释放温度900℃;验证了液体或固体标准物质作外标曲线对样...  相似文献   

15.
离子色谱法测定水中总氮   总被引:1,自引:0,他引:1  
用离子色谱法检测水中总氮,检测波长为205nm,整个分析过程仅需7min。方法的检出限为0.03mg/L.测定结果的相对标准偏差为2.1%~3.5%(n=7),加标回收率为99.0%~103.5%。用离子色谱法和分光光度法对水样进行测定,两种方法测定结果的相对偏差不大于2.1%。  相似文献   

16.
建立了碱消解-火焰原子吸收光谱法测定土壤中六价铬的方法.讨论了pH值对六价铬测定的影响.干扰实验的结果表明同等含量的三价铬对六价铬测定无干扰.实验对比了无背景校正、氘灯背景校正、塞曼背景校正三种工作方式,分别对低、中、高三个水平土壤六价铬标准物质进行了测定,结果表明,低含量的土壤样品用塞曼背景校正方式测定的结果更准确,...  相似文献   

17.
电感耦合等离子体发射光谱法测定土壤中全磷   总被引:1,自引:0,他引:1  
以氢氧化钠做溶剂,用电感耦合等离子体发射光谱法测定土壤中全磷。方法检出限为0.025 mg/kg 。对实际土壤样品进行连续6次测定,方法精密度为1.27﹪~3.40﹪,回收率为95﹪~102﹪。经国家标准物质验证,结果与标准值相符。方法快速、准确。  相似文献   

18.
建立电感耦合等离子质谱法测定土壤中镉和总汞的方法。土壤样品在电热板上用盐酸和硝酸于100℃低温消解,重量法定容,取上清液上机测定。镉和总汞含量分别在0.502~10.20 ng/g,0.212~5.010 ng/g范围内线性良好,相关系数(r2)大于0.999,土壤中镉和总汞的检出限分别为0.021,0.002μg/g,测定结果的相对标准偏差分别为1.99%,5.57%(n=6),加标回收率分别为97.5%~101.1%,87.5%~92.9%。该方法样品处理简单快捷,检出限低,准确度和精密度高,适合土壤中镉和总汞含量的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号