首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含湿量对甲烷湿空气自热重整积碳特性的影响   总被引:1,自引:0,他引:1  
微动力装置中碳氢燃料催化燃烧被认为是有效的方法,但燃烧室内燃料催化重整普遍存在由积碳导致的催化剂失活等问题.本文采用数值方法研究了微细腔中甲烷湿空气在镍基催化剂上的自热重整反应,重点分析含湿量对甲烷自热重整反应及积碳特性的影响.结果表明:含湿量将增强甲烷重整反应;自热反应散热量和表面积碳浓度均随含湿量增加而降低.混合物...  相似文献   

2.
针对微动力装置中重整腔内催化剂表面容易积碳,重整反应需要大量能量等问题,在重整腔入口引入氧气,使甲烷发生部分氧化反应为催化重整提供热量。本文采用数值方法研究了微细腔中CH_4/O_2/H_2O镍基催化剂上的自热重整反应,重点分析CH_4/O_2/H_2O混合物组分对甲烷自热重整反应及积碳的影响。结果表明:在混合物组分CH_4/O_2/H_2O摩尔比为1:0.2:2时,甲烷自热反应放热量刚好能满足甲烷重整反应的需求,氢气质量分数较高为3.32%,积碳浓度较低为1.19×10~(-6) kmol/m~2。  相似文献   

3.
微型燃烧器预混腔内催化重整、积碳及流动特性模拟   总被引:1,自引:0,他引:1  
因微型燃烧器内微尺度燃烧易熄火,燃烧效率不高,存在催化重整过程中的积碳、微尺度等问题,可利用甲烷和湿空气中水蒸汽预混催化重整产氢来强化燃烧,对预混腔内催化重整,积碳及流动特性进行模拟,探讨了微型预混腔中甲烷、水蒸汽重整过程中水碳比、质量流量和催化壁面温度对催化重整、积碳、流动等的影响.  相似文献   

4.
建立了相关实验电池多物理场模型,该模型包括了电化学反应的电化学势平衡方程、甲烷水汽重整的通用速率方程和描述阳极复杂组分气体输运的菲克定律形式尘气模型. 该理论模型的电流~电压 曲线与实验数据很好地吻合,验证了理论模型的有效性. 理论分析发现,低水汽含量甲烷重整反应中水汽的反应级数为1. 理论模型的数值仿真计算还给出多个物理量的详细信息. 据此对碳沉积机制进行深入分析,清楚地描述了工作电流对抑制焦炭生成的机制. 分析比较了积碳活性的两个表达式,发现它们都可以正确地定性反映积碳活性变化趋势,但定量数值并不确切;阳极扩散层降低积碳临界电流的机制也获得了解释. 值得指出的是,虽然积碳活性模型只是定性正确,但分析表明积碳临界电流的降低却可以通过积碳活性模型进行定量解释.  相似文献   

5.
利用计算流体力学软件CFD和化学反应动力学软件CHEMKIN研究了微通道内催化壁面温度、反应混合气体初始温度对镍基催化剂上CH4/O2/H2O自热重整反应暂态特性的影响。结果表明,微通道内的甲烷自热重整反应暂态特性与温度关系密切。温度越高,反应趋于平衡所需的时间越短;当反应器壁面温度较高时,提高反应混合气入口温度对反应影响不大;在相同的温升下,提高反应器壁面温度比提高反应混合气体初始温度对反应过程中氢气的产生和甲烷的转化更有利。  相似文献   

6.
在较低的温度下,通过将放热的部分氧化反应和吸热的水蒸汽重整反应耦合起来的自热方式实现了高效的制氢过程. 在氧碳比(O/C)为0.34,水碳比(S/C)为3,温度为600 oC时生物油接近完全转化,得到最高氢产率为64.3%. 自热水蒸汽重整反应条件温度、O/C、S/C、质量空速等可以用来控制反应氢产率和气体产物分布. 对自热过程和普通水蒸汽重整过程做了比较,并对反应机理进行了探讨.  相似文献   

7.
本文针对微细腔内在Ni/α-Al_2O_3催化作用下,存在CH_4/CO_2反应时,数值研究了在不同的水碳比,不同的进口甲烷质量组分Rm,不同的进口流量与微细腔壁温下甲烷/水蒸气催化重整反应特性.结果发现,微细腔中存在CH_4/CO_2反应时,CH_4/H_2O催化重整反应中CO_2和CO的产生变化情况比其它反应机理下有较大的变化.随着水碳比增大,H_2和CO_2质量分数有所增大,而CO质量分数先增加后又明显地降低,并出现CO_2质量分数从小于CO质量分数变化到大于CO质量分数;增大Rm,能使反应更充分的发生,反应物的转化率,生成物的质量分数都有提高,并随着Rm的增加,生成产物中CO_2质量分数大于CO的质量分数时对应的水碳比临界值减小,在Rm为O.05、0.1、0.15时,对应的水碳比临界值分别为2.0、1.8和1.6;而混合物进口质量流量增加,反应物的转化率、生成物的产物含量都有不同程度的降低;但壁面温度的增加,反应速率有较大提高,能较明显提高反应物转化率.  相似文献   

8.
基于镍基催化剂下表面反应机理,采用数值模拟方法,深入研究了在一定水碳比下,CO_2含量的变化以及在固定的CH_4/H_2O/CO_2比例下催化壁面温度,质量流量对微细腔内甲烷重整反应的影响。结果表明提高CO_2/CH_4的比例能够明显提高CO_2、CH_4转化率,提高CO的含量。CH_4/CO_2基元反应的产物在低温条件下CO和H_2O,水蒸气转化率和H_2产量降低,CO_2含量增加降低水蒸气的消耗;在高温条件下,由于产生CO和H_2,使氢气含量增加但水蒸气转化率降低.  相似文献   

9.
对高温氦气加热的甲烷蒸汽重整制氢过程进行了热力学分析。结果表明,在较高温度条件下压力对系统重整性能的影响很小。在重整压力大于1 MPa,水碳比大于2时,随着温度的升高,热效率先增加到最大值然后又缓慢下降;在温度800~1000℃范围内,随着水碳比的增加热效率先升高后下降。分析表明,利用高温气冷堆氮气供热的甲烷蒸汽重整制氢系统,选择较高的水碳比和重整温度有利于提高系统热效率和制氢性能。得到了匹配高温气冷堆供热系统且能使氢气产量和热效率的接近最大值的甲烷蒸汽重整反应优化操作参数范围.  相似文献   

10.
C12A7-Mg催化剂水蒸汽重整生物油、石脑油和CH4制氢   总被引:6,自引:0,他引:6  
利用自制的C12A7-Mg催化剂,研究了催化水蒸汽重整生物油、石脑油和CH4制备氧气的性能,以及催化剂寿命,并用X射线光电子能谱对催化剂进行了表征.温度测试范围为250-850℃.对于催化水蒸汽重整生物油反应,在750℃时,氢气产率最大达到80%,碳的转化率接近95%.在相同的反应温度下,催化水蒸汽重整石脑油和CH4的氢气产率和碳的转化率要低于重整生物油反应.催化剂的失活主要是由于重整过程中的积碳.  相似文献   

11.
针对集成板式固体氧化物燃料电池,建立了数学物理模型,分析阳极侧多孔支撑层内富氢气体的内重整反应传递过程特性.讨论了操作温度、入口处H2O:CH4比值以及多孔材料的孔隙率对甲烷蒸汽重整转换率和氢气的生成量的影响,得到了在电池的一定运行工况范围内比较有利的反应条件.  相似文献   

12.
本研究搭建了太阳能热化学实验平台,依托室内太阳模拟平台,进行了2 kW太阳能甲烷重整反应器的实验研究,探究了反应温度、反应物流量等关键参数对系统性能(甲烷转化率、产物选择性)的影响,并基于燃气-蒸汽联合循环发电系统模型,模拟计算了太阳能热化学互补发电系统性能。结果表明,当反应器腔体的平均温度为880℃、甲烷流量为5.5 L·min^-1、水碳比为3:1时,甲烷的转化率为55.8%,太阳能净发电效率可达26.0%。  相似文献   

13.
为了解决重整器吸热的问题,将催化燃烧反应耦合在反应器内,重整反应的热量由燃烧反应供给,这种耦合反应器可以提高系统热效率。但是由于两种反应的化学反应速率不同,吸放热反应的匹配程度影响着制氢效率。加强过程耦合,研究催化燃烧腔与重整腔之间热量匹配才能制造出结构紧凑、能效高的集成反应器。针对这个问题,本文展开了相关实验研究,探究了两个反应腔在不同的流动方向以及催化燃烧腔不同的壁面涂覆方式下最佳的耦合方案,结果表明:无论选用哪种集成方式,应保证重整器前段的温度高,壁面温度均匀;其中,垂直布置方式具有较大的优势,产氢含量可以达到74%以上;当催化燃烧腔使用泡沫金属作为催化剂载体时产氢含量可以达到60%以上。  相似文献   

14.
原位DRIFTS研究CH4部分氧化和CO2重整的耦合   总被引:3,自引:0,他引:3  
8%Ru-5?/γ-Al2O3催化剂对于甲烷的低温活化具有较好的催化活性,在500℃下甲烷、二氧化碳和氧气的耦合反应中,吸热反应二氧化碳重整和放热反应甲烷部分氧化进行耦合强化,使得耦合反应中的甲烷转化率为38.8%。用原位漫反射傅里叶红外光谱法对钌系催化剂耦合甲烷部分氧化和二氧化碳重整反应体系机理进行研究。CO在8%Ru-5?/γ-Al2O3上吸附,表明CO在催化剂表面上波数为2 167 cm-1(2 118 cm-1)和2031 cm-1(2 034 cm-1)处形成孪生态Ru(CO)2和Ce(CO)2吸附物种,而且高温下CO吸附物种很容易从催化剂表面脱附出来。原位漫反射红外实验结果表明甲烷部分氧化反应时催化剂表面上有吸附物种碳酸根、甲酰基(甲酸盐)和一氧化碳的形成,其中表面的甲酰基和甲酸盐物种是甲烷部分氧化反应的主要活性中间物,这些中间活性中间体由甲烷吸附态CHx和催化剂表面的氧吸附态结合而形成的,随后这种中间物种再分解为CO产物;甲烷和二氧化碳重整反应时没有新的吸附物种产生,由此提出重整反应的机理是吸附态的甲烷和二氧化碳在催化剂活性中心上进行活化解离而生成合成气;甲烷、二氧化碳和氧气耦合反应过程中出现新的羟基物种(桥式羟基Ru-(OH)2),耦合反应机理复杂可能是由部分氧化和重整两类反应机理的复合,其中桥式羟基Ru-(OH)2参与了反应的进行。  相似文献   

15.
在高压反应釜中进行了神木烟煤与CO2吸收剂CaO混合物的蒸汽气化反应,实现了在一个反应器内直接制甲烷的工艺。典型工况下气态产物中甲烷含量(体积分数)占62.28%,氢气占25.05%,一氧化碳和二氧化碳含量均低于0.1%,验证了煤直接制甲烷反应的可行性。实验研究了温度,压力,钙碳摩尔比[Ca]/[C],以及水碳摩尔比[H2O]/[C]的变化对反应产物及碳转化率的影响。结果表明降低反应温度和提高反应压力有利于甲烷的产生,[Ca]/[C]=0.5和[H2O]/[C]=1时具有良好的制甲烷效果。  相似文献   

16.
用电催化重整方法和NiCuZn-Al2O3催化剂进行生物油模型化合物苯甲醚的水蒸气重整制氢研究,结果表明,在700 oC和4 A条件下,获得的最高碳转化率和氢产率分别为98.3%和88.7%,电催化重整过程中发现的电流促进效应主要归结于重整反应床中温度分布的改变和电阻丝发射的热电子影响. 利用X射线衍射方法分析了反应前后的NiCuZn-Al2O3催化剂结构变化. 实验导出的苯甲醚重整反应表观活化能为99.54 kJ/mol,明显高于乙醇、乙酸和生物油轻质组分的重整反应表观活化能.  相似文献   

17.
用在线质谱法研究了Ni/Al2O3催化剂上甲烷分解温度和时间对积炭的影响。实验结果表明:在600-800℃内甲烷在还原的Ni/Al2O3催化剂上可分解为表面碳物种(即NixC)和氢气,这种表面碳物种在较低的温度下可扩散进入体相,在高温下可逐步转化为低活性的碳物种。在800℃下由于表面碳物种不能扩散进入体相,金属镍中心迅速被表面碳物种覆盖,导致甲烷分反应失活。  相似文献   

18.
高压下固相硝基甲烷分解的分子动力学计算   总被引:3,自引:0,他引:3       下载免费PDF全文
张力  陈朗 《物理学报》2013,62(13):138201-138201
基于ReaxFF, 采用NVT系综和Berendsen方法对0–7 GPa时和2500 K时固相硝基甲烷的 分解过程进行分子动力学计算, 通过分析硝基甲烷发生分解反应生成的碎片数量随时间的变化, 对不同压强下硝基甲烷的分解机理进行研究. 计算结果表明在0–3 GPa时, 初始分解路径为C–N键断裂和硝基甲烷的异构化; 在4–7 GPa 时, 初始分解路径为分子间质子转移和C–N, N–O键的断裂; 在硝基甲烷的第二阶段反应中存在H2O, NO, NO2, HONO, 硝基甲烷分子自身的催化反应. 硝基甲烷在高温高压下发生热分解反应生成碳团簇, 且团簇中碳原子的数量和碳团簇的空间构型随着压强的变化而变化. 关键词: ReaxFF 分子动力学 热分解 压强效应 碳团簇  相似文献   

19.
紧凑型甲烷重整器燃烧管道由燃料气体通道、多孔层以及固体平板组成.采用三维数值模拟方法,对甲烷入口速度、温度等对催化燃烧反应以及产热特性影响进行了研究.结果显示,甲烷入口速度由2.5 m/8增大到10 m/s时,最大化学反应速率提高了20.4%,CH4利用率下降了41.2%,最大热流量提高了11.8%;温度由873 K升...  相似文献   

20.
中低温太阳热能的甲醇重整制氢能量转换机理研究   总被引:1,自引:1,他引:0  
通过甲醇-水蒸汽化学反应,本文提出中低温太阳热能与甲醇重整反应结合的制氢新方法,探讨了中低温太阳热能与甲醇重整制氢过程的能量转换机理,分析了不同压力条件下的水碳比、反应温度对中低温太阳热能-甲醇重整制氢的影响规律.研究结果表明:集热180~240 ℃的低品位太阳热能(品位为0.34~0.42)将能更好地与甲醇重整反应所需的品位相匹配.在反应压力为1×1.01325×105 Pa,反应产物中H2浓度可有望达到72%~75%,中低温太阳热能转化为化学能占燃料化学能的份额可达12%.该研究为低能耗制取清洁燃料氢提供了一条新途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号