首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Formation of the O?O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O?O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O?O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O?O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O?O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Ceric ammonium nitrate (CAN) or CeIV(NH4)2(NO3)6 is often used in artificial water oxidation and generally considered to be an outer‐sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII‐O‐CeIV(OH2)(NO3)4]+ ( 3 ), a complex obtained from the reaction of [(N4Py)FeII(NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV=O]2+ ( 2 ) with CeIII(NO3)3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S =1 FeIV in 2 to S =5/2 in 3 , which is found to be facile despite the formal spin‐forbidden nature of this process. This observation suggests that FeIV=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.  相似文献   

14.
15.
16.
17.
18.
19.
The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV(O)(CH3CN)]2+ ( 2 ; cyclam=1,4,8,11‐tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII]2+ with aqueous hydrogen peroxide (H2O2) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo‐ and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII]2+ and H2O2. In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high‐yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号