首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Despite its widespread use in signal collection, flexible sensors have been rarely used in human–machine interactions owing to its indistinguishable signal, poor reliability, and poor stability when inflicted with unavoidable scratches and/or mechanical cuts. A highly sensitive and self‐healing sensor enabled by multiple hydrogen bonding network and nanostructured conductive network is demonstrated. The nanostructured supramolecular sensor displays extremely fast (ca. 15 s) and repeatable self‐healing ability with high healing efficiency (93 % after the third healing process). It can precisely detect tiny human motions, demonstrating highly distinguishable and reliable signals even after cutting–healing and bending over 20 000 cycles. Furthermore, a human–machine interaction system is integrated to develop a facial expression control system and an electronic larynx, aiming to control the robot to assist the patient's daily life and help the mute to realize real‐time speaking.  相似文献   

8.
9.
10.
The self‐assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single‐crystal X‐ray diffraction experiments show that stacked protonated triazole quartets (T4) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion–π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+/X? translocators, but higher transport activity is observed for X? in the presence of the K+‐carrier valinomycin. These self‐assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion–π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号