首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Induced π acidity from polarizability is emerging as the most effective way to stabilize anionic transition states on aromatic π surfaces, that is, anion–π catalysis. To access extreme polarizability, we propose a shift from homogeneous toward heterogeneous anion–π catalysis on higher carbon allotropes. According to benchmark enolate addition chemistry, multi‐walled carbon nanotubes equipped with tertiary amine bases outperform single‐walled carbon nanotubes. This is consistent with the polarizability of the former not only along but also between the tubes. Inactivation by π‐basic aromatics and saturation with increasing catalyst concentration support that catalysis occurs on the π surface of the tubes. Increasing rate and selectivity of existing anion–π catalysts on the surface of unmodified nanotubes is consistent with transition‐state stabilization by electron sharing into the tubes, i.e., induced anion–π interactions. On pristine tubes, anion–π catalysis is realized by non‐covalent interfacing with π‐basic pyrenes.  相似文献   

3.
4.
5.
6.
Herein we report the organoplatinum‐mediated bottom‐up synthesis, characterization, and properties of a novel large π‐extended carbon nanoring based on a nanographene hexa‐peri ‐hexabenzocoronene (HBC) building unit. This tubular structure can be considered as an example of the longitudinal extension of the cycloparaphenylene scaffold to form a large π‐extended carbon nanotube (CNT) segment. The cyclic tetramer of a tetramesityl HBC ([4]CHBC) was synthesized by the reaction of a 2,11‐diborylated hexa‐peri ‐hexabenzocoronene with a platinum complex, followed by reductive elimination. The structure of this tubular molecule was further confirmed by physical characterization. Theoretical calculations indicate that the strain energy of this nanoring is as high as 49.18 kcal mol−1. The selective supramolecular host–guest interaction between [4]CHBC and C70 was also investigated.  相似文献   

7.
8.
9.
10.
A series of N ‐arylimide molecular balances were designed to study and measure fluorine–aromatic (F–π) interactions. Fluorine substituents gave rise to increasingly more stabilizing interactions with more electron‐deficient aromatic surfaces. The attractive F–π interaction is electrostatically driven and is stronger than other halogen–π interactions.  相似文献   

11.
12.
13.
A series of rod‐shaped polyoxometalates (POMs) [Bu4N]7[Mo6O18NC(CH2O)3MnMo6O18(OCH2)3CNMo6O18] and [Bu4N]7[ArNMo6O17NC(CH2O)3MnMo6O18(OCH2)3CNMo6O17NAr] (Ar=2,6‐dimethylphenyl, naphthyl and 1‐methylnaphthyl) were chosen to study the effects of cation–π interaction on macroionic self‐assembly. Diffusion ordered spectroscopy (DOSY) and isothermal titration calorimetry (ITC) techniques show that the binding affinity between the POMs and Zn2+ ions is enhanced significantly after grafting aromatic groups onto the clusters, leading to the effective replacement of tetrabutylammonium counterions (TBAs) upon the addition of ZnCl2. The incorporation of aromatic groups results in the significant contribution of cation–π interaction to the self‐assembly, as confirmed by the opposite trend of assembly size vs. ionic strength when compared with those without aromatic groups. The small difference between two aromatic groups toward the Zn2+ ions is amplified after combining with the clusters, which consequently triggers the self‐recognition behavior between two highly similar macroanions.  相似文献   

14.
15.
16.
17.
Controlled nitrogen‐doping is a powerful methodology to modify the properties of carbon nanostructures and produce functional materials for electrocatalysis, energy conversion and storage, and sensing, among others. Herein, we report a wall‐ and hybridisation‐selective synthetic methodology to produce double‐walled carbon nanotubes with an inner tube doped exclusively with graphitic sp2‐nitrogen atoms. Our measurements shed light on the fundamental properties of nitrogen‐doped nanocarbons opening the door for developing their potential applications.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号