首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

2.
From the reactions between 2,5-dianilinoterephthalic acid and M2(O2CBut)4 in toluene the dicarboxylate bridged complexes [(ButCO2)3M2]2{micro-1,4-(CO2)(2)-2,5-(NHPh)2C6H2}, (M=Mo) and (M=W) have been isolated. The compounds are air sensitive, sparingly soluble in aromatic hydrocarbons but appreciably soluble in tetrahydrofuran. Electronic structure calculations employing density functional theory on the model compounds [(HCO2)3M2]2{micro-1,4-(CO2)(2)-2,5-(NHPh)2C6H2}, indicate that the ground state structure contains a planar bridge and that for molybdenum the HOMO is a bridge based molecular orbital. However, the compounds show reversible oxidation waves (CV and DPV) that for both M=Mo and W are metal based oxidations. Furthermore, the cations + and + are shown to be valence trapped and fully delocalized respectively. The magnitude of the electronic coupling of the two M2 centers, Hab, can be estimated as 383 cm-1 for + and 1500 cm-1 for + based on the corresponding low energy IVCT or charge resonance bands.  相似文献   

3.
From the reactions between [M2(O2CtBu)4] and 9,10-anthracenedicarboxylic acid in toluene, the dicarboxylate bridged complexes [[M2(O2CtBu)3]2(mu-9,10An(CO2)2)], have been obtained as microcrystalline yellow (M = Mo) and red (M = W) powders. The powders are soluble in THF forming intense red (M = Mo) and green (M = W) solutions. The electronic absorption spectra in 2-MeTHF have been recorded as a function of temperature (2-298 K) and show a small bathochromic shift on cooling. The electronic structures have been investigated by molecular orbital calculations employing density functional theory on the model compounds [(HCO2)3M2]2(mu-9,10-An(CO2)2) where the M4 unit is constrained to lie in a plane. These reveal a minimum energy, gas-phase structure wherein the plane of the anthracene is twisted by ca. 54 degrees with respect to its 9,10-carboxylate units for both Mo and W. The results of these calculations are correlated with the electronic absorption spectral data and the electrochemical measurements (CV and DPV) of the first and second oxidation waves. The EPR spectra of the radical cations formed by single-electron oxidation with [Cp2Fe](+)[PF6]- in a THF-CH2Cl2 solvent mixture show that the complexes are valence trapped at ambient temperature on the EPR timescale. These results are discussed in the light of recent studies of dicarboxylate-linked MM quadruple bonds.  相似文献   

4.
The title compounds trans-M(2)(O(2)CMe)(2)[C((i)PrN)(2)C≡C-Ph](2), I (M = Mo) and II (M = W), show electronic absorptions in the visible region of the spectrum assignable to (1)MLCT [M(2)δ to phenylethynylamidinate π*]. These compounds show dual emission from S(1) and T(1) states. For both I and II, S(1) is (1)MLCT, but for I the T(1) state is shown to be MMδδ* while for II T(1) is (3)MLCT. The lifetimes of the S(1) and T(1) states have been determined by femtosecond and nanosecond transient absorption spectroscopy: for I S(1) ~ 20 ps and T(1) ~ 100 μs and for II S(1) ~ 6 ps and T(1) ~ 5 μs. From solvent dependence of the absorption and emission spectra, we suggest that the S(1) states are localized on one amidinate ligand though the initial absorption is to a delocalized state.  相似文献   

5.
Toluene solutions of M2(O2C(t)Bu)4 (M = Mo, W; 2 equiv) react with a range of functionalized terephthalic acids, HO2CArCO2H (Ar = C6H4, C6F4, C6Cl4, C6H2-2,5-Cl2, C6H2-2,5-(OH)2, C6H3-2-F), to give [(tBuCO2)3M2]2[mu-O2CArCO2]. These compounds show intense ML(bridge)CT absorptions in the visible region of the electronic spectrum, and the terephthalate bridge serves to electronically couple the two M2 units via interactions between the M2 delta and bridge pi orbitals. Electronic structure calculations reveal how the degree of electronic coupling is controlled by the dihedral angles between the terephthalate C6 ring and the two CO2 units and the degree of interaction between the M4 delta MOs and the LUMO of the bridge. Both of these factors are controlled by the aryl substituents, and collectively these determine the thermochromism displayed by these complexes in solution together with the physical properties of the oxidized radical cations as determined by electrochemical studies (CV, DPV), UV-vis-NIR and EPR spectroscopic methods.  相似文献   

6.
The preparation of 2,6-azulenedicarboxylic acid (I) from its diester, 2-CO(2)(t)Bu-6-CO(2)-C(10)H(6) (II), is reported together with the crystal and molecular structure of the ester, II. From the reactions between the dicarboxylic acid I and the MM quadruply bonded complexes M(2)(O(2)C(t)Bu)(4), where M = Mo or W, the azulenedicarboxylate bridged complexes [M(2)(O(2)C(t)Bu)(3)](2)(mu-2,6-(CO(2))(2)-C(10)H(6)) have been isolated, III (M = Mo) and IV (M = W). The latter compounds provide examples of electronically coupled M(2) centers via a polar bridge. The compounds show intense electronic absorptions due to metal-to-bridge charge transfer. This occurs in the visible region of the spectrum for III (M = Mo) but in the near-IR for IV (M = W). One electron oxidation with Ag(+)PF(6)(-) in THF generates the radical cations III(+) and IV(+). By both UV-vis-NIR and EPR spectroscopy the molybdenum ion III(+) is shown to be valence trapped or Class II on the Robin and Day classification scheme. Electrochemical, UV-vis-NIR, and EPR spectroscopic data indicate that, in the tungsten complex ion IV(+), the single electron is delocalized over the two W(2) centers that are separated by a distance of ca. 13.6 A. Furthermore, from the hyperfine coupling to (183)W (I = (1)/(2)), the singly occupied highest molecular orbital is seen to be polarized toward one W(2) center in relationship to the other. Electronic structure calculations employing density functional theory indicate that the HOMO in compounds III and IV is an admixture of the two M(2) delta orbitals that is largely centered on the M(2) unit having proximity to the C(5) ring of the azulenedicarboxylate bridge. The energy of the highest occupied orbital of the bridge lies very close in energy to the M(2) delta orbitals. However, this orbital does not participate in electronic coupling by a hole transfer superexchange mechanism, and the electronic coupling in the radical cations of III and IV occurs by electron transfer through the bridge pi system.  相似文献   

7.
From the reactions between M2(TiPB)4 compounds and meta and para-vinylbenzoic acids (2 equiv.) in toluene at room temperature the compounds trans-M2(TiPB)2L2, where L = m-vinylbenzoate 1A (M = Mo) and 1B (M = W) and TiPB = 2,4,6-triisopropylbenzoate, and where L = p-vinylbenzoate 2A (M = Mo) and 2B (M = W) have been isolated. Compounds 1A and 2A have been shown to undergo Heck carbon–carbon coupling reactions with phenyliodide to produce trans-Mo2(TiPB)2(O2CC6H4-m-CHCH–C6H5)2, 3A and trans-Mo2(TiPB)2(O2CC6H4-p-CHCH–C6H5)2, 4A. The molybdenum compounds 1A and 2A have been structurally characterized by single crystal X-ray crystallography. All the new compounds have been characterized by 1H NMR, IR, UV-visible absorption and emission spectroscopy, high resolution MALDI-TOF MS, fs- and ns-transient absorption spectroscopy and fs-time-resolved IR spectroscopy. Electronic structure calculations employing density functional theory, DFT, and time-dependent DFT have been employed to aid in the interpretation of spectral data. All compounds show intense absorptions in the visible region corresponding to M2δ to Lπ* charge transfer transitions. The lifetimes of the 1MLCT state fall in the range of 1–10 ps and for the molybdenum complexes the T1 states are 3δδ* with lifetimes ∼50 μs while for the tungsten complexes the T1 are 3MLCT with lifetimes in the range of 3–10 ns.  相似文献   

8.
9.
The photophysical properties of the series of quadruply bonded M(2)(O(2)C-Ar)(4) [M = Mo, Ar = phenyl (ph), 1-naphthalene (1-nap), 2-naphthalene (2-nap), 9-anthracene (9-an), 1-pyrene (1-py), and 2-pyrene (2-py); M = W, Ar = ph, 2-nap] complexes were investigated. The lowest energy absorption of the complexes is attributed to a metal-to-ligand charge transfer (1)MLCT transition from the metal-based delta HOMO to the pi* O(2)C-Ar LUMO. The Mo(2)(O(2)C-Ar)(4) complexes exhibit weak short-lived emission (<10 ns) and a nonemissive, long-lived (40-76 mus) excited state detected by transient absorption spectroscopy. The short- and long-lived species are attributed to the (1)MLCT and (3)MLCT excited states, respectively, based on the large Stokes shift, vibronic progression in the low-temperature emission spectrum, and solvent dependence. Comparisons are made to the W(2)(O(2)C-Ar)(4) complexes, which are easier to oxidize and exhibit greater spin-orbit coupling than the Mo(2) systems. From the excited-state energy of the emissive (1)MLCT state and the electrochemical properties of the complexes, it is predicted that this excited state should be a powerful reducing agent. The crystal and molecular structure of Mo(2)(O(2)C-9-an)(4) is also reported together with electronic structure calculations employing density functional theory. To our knowledge, this is the first observation of MLCT excited states in quadruply bonded complexes. In addition, the photophysical properties of the present systems parallel those of organic aromatic molecules and may be viewed as metal-mediated organics. The introduction of the M(2) delta orbital in the complexes in conjugation with the organic pi-system of the ligands affords the opportunity to tune the excited-state energies and redox potentials.  相似文献   

10.
Measurements of the third-order nonlinear optical responses of solutions of the metal-metal multiply bonded complexes Mo(2)(OPr(i))(6), W(2)(OBu(t))(6), M(2)(NMe(2))(6), M(2)(O(2)CBu(t))(4), and M(2)Cl(4)(PMe(3))(4) (M = Mo, W), using picosecond degenerate four-wave mixing at 1064 nm, are reported. These complexes display only very small instantaneous electronic polarizations when excited with cross-polarized beams. When the excitation beams are similarly polarized, a significant third-order optical response is detected, which is attributable to the formation of bulk thermal excitation gratings. Time-dependent measurements support this view.  相似文献   

11.
The reaction of bis(pyrazol-1-yl)methane tetracarbonylmolybdenum(0) or tungsten(0) complexes with RSnCl3 (R=Ph, Cl) at room temperature yielded heterobimetallic complexes CH2(Pz)2M(CO)3(Cl)(SnCl2R) (Pz represents substituted pyrazole; M=Mo or W; R=Ph or Cl) in good yields, which have been characterized by elemental analysis, 1H NMR and IR spectroscopy. The reaction of bis(3,5-dimethyl-4-halopyrazol-1-yl)methane tetracarbonyl tungsten with PhSnCl3 did not take place even in refluxing CH2Cl2. The electronic and steric characteristics of substituents on the pyrazole ring remarkably influence the structures of the products. The structures of CH2(3,5-Me2-4-BrPz)2W(CO)3(Cl)(SnCl3) (8) and CH2(4-BrPz)2Mo(CO)3(μ-Cl)(SnCl2Ph) (17) (Pz: pyrazole) determined by X-ray crystallography show that no chlorine-bridged W---Sn bond is observed in complex 8, while one chlorine-bridged Mo---Sn bond exists in complex 17. The Sn---M bond length is 2.7438(5) Å in complex 8 (W---Sn) and 2.7559(4) Å in complex 17 (Mo---Sn).  相似文献   

12.
Electronic structure calculations employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) have been carried out on the model complexes {[(HCO2)3M2]2(mu-O2CCO2)}0/+(M=Mo or W) in D2h symmetry, where the oxalate bridge forms either five- or six-membered rings with the M(2) centres; the complexes are hereafter referred to as mu(5,5)0/+ and mu(6,6)0/+, respectively. The calculations predict that the neutral complexes should exist as the mu(5,5) linkage isomer, while the radical cations favour the mu(6,6) isomer by ca. 4-6 kJ mol-1. For the mu(5,5) isomers, the rotational barriers about the oxalate C-C bond have been calculated to be 15.9 and 27.2 kJ mol-1 for M=Mo and W, respectively. For the cationic mu(5,5)+ isomers the barrier is higher, being 36.8 and 50.6 kJ mol-1 for M=Mo and W, respectively. The calculated Raman and visible near-IR spectra for the mu(5,5)0/+ and mu(6,6)0/+ are compared with experimental data obtained for the {[(tBuCO2)3M2]2(mu-O2CCO2)}0/+ complexes, hereafter referred to as M4OXA0/+(M=Mo or W). The experimental data more closely correlate with that calculated for the mu(5,5)0/+ linkage isomers, and the 13C-NMR spectrum of the mixed metal complex Mo2W2OXA indicates the presence of the 5-membered oxalate-bridged species (J(CC)=100 Hz).  相似文献   

13.
14.
You YS  Yoon JH  Lim JH  Kim HC  Hong CS 《Inorganic chemistry》2005,44(20):7063-7069
Self-assembly of a new precursor [Cu(L)](ClO4)2 (1) (L = macrocyclic ligand) with octacyanometalates [M(CN)8]3- (M = Mo, W) produced two-dimensional cyano-bridged Cu(II)-M(V) bimetallic assemblies [Cu(L)]3n[M(CN)8]2n.6nH2O [M = Mo (2), W (3)] with novel honeycomblike structures, characterized by spectroscopic data, single-crystal X-ray diffraction studies, and magnetic measurements. The crystallographic determination reveals that compounds 2 and 3 are isostructural and crystallize in the triclinic system (P). The Cu atom in a distorted octahedral environment experiences a tetragonal elongation of apical nitrogen atoms exhibiting average Cu-Nax lengths of 2.566 Angstroms for 2 and 2.593 Angstroms for 3, which accounts for the Jahn-Teller effect of a Cu(II) ion. The Cu-NC angles are magnetically important, ranging from 135.7 to 159.2 degrees. Three types of L in the crystal lattice are observed, which are dependent on the relative positions of the pendant hydroxyl groups with respect to the CuN4 basal plane. The positions are correlated with hydrogen bonding of OH groups to neighboring atoms. The magnetic data indicate that ferromagnetic and antiferromagnetic interactions between Cu(II) and M(V) through the CN linkage coexist.  相似文献   

15.
A series of compounds of the form [M(2)L(4)] and [[((t)()BuCO(2))(3)M(2)](2)(mu-L')] have been made where M = Mo or W, L = a thienyl, bithienyl, or terthienyl carboxylate, and L' = a corresponding thienyl dicarboxylate. The electronic absorption spectra are reported and the electronic structures discussed. Intense metal-to-ligand charge transfer bands traverse the visible and near-IR regions of the electronic absorption spectrum. The compounds show reversible metal-based oxidations and quasireversible ligand-based reductions. The molecular structure of Mo(2)(O(2)C-2-Th)(4).2THF is reported, on the basis of a single crystal X-ray diffraction study. These compounds provide insight into the expected properties of related dimetalated polythiophenes incorporating MM quadruple bonds.  相似文献   

16.
利用金属交换法合成了四个新的含钌手性过渡金属簇合物[MRuCo(CO)_8(μ_3-Se)[η_5-C_5H_4C(O)R}]( 1 M= Mo, R= OEt; 2 M= W, R= OEt; 3 M= Mo, R= CH_2CH_2COOMe; 4 M= W, R= CH_2CH_2COOMe),并用红外、核磁、元素分析测试结果进行表征,对簇合物1进行了单晶结构测定,晶体属单斜晶系,P2_1/n空间群,晶胞参数a=10.168(2)A,b=9.018(2)A,c=23.121(3)A,β=92.50(1)°,Z=4。  相似文献   

17.
Layered metal disulfides-MS(2) (M = Mo, W) in the form of fullerene-like nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The alkali metal concentration in the host lattice was found to depend on the kind of sample and the experimental conditions. Furthermore, an inhomogeneity of the intercalated samples was observed. The product consisted of both nonintercalated and intercalated phases. X-ray diffraction analysis and transmission electron microscopy of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 A) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. Deintercalation of the hydrated alkali atoms and restacking of the MS(2) layers was observed in all the samples after prolonged exposure to the atmosphere. Electric field induced deintercalation of the alkali metal atoms from the host lattice was also observed by means of the XPS technique. Magnetic moment measurements for all the samples indicate a diamagnetic to paramagnetic transition after intercalation. Measurements of the transport properties reveal a semiconductor to metal transition for the heavily K intercalated 2H-MoS(2). Other samples show several orders of magnitude decrease in resistivity and two- to five-fold decrease in activation energies upon intercalation. These modifications are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Recovery of the pristine compound properties (diamagnetism and semiconductivity) was observed as a result of deintercalation.  相似文献   

18.
研究了[{CO)4M}xM'S4]^2^-[x=1,2; M=Mo(0), W(0); M'=Mo(VI), W(VI)]系列簇合物共振Raman(RR)光谱及红外(IR)光谱。除了对^νc-o, ^νM(VI)-s(b)[S(b):桥基S], ^νM(VI)-s(t)[S(t): 端基S], ^νM(0)-c, ^δM(0)-c-o进行归属外, 着重讨论^νM(0)-s(b), ^νM(0)-M(VI)的归属。研究了IR谱中Δν[^νM(VI)-s(b)─^νM(0)-s(b)]与M(0)→M(VI)电荷迁移的关系。RR谱研究结果表明, 在[(CO)4^-MS2MoS2]^2^-, [(CO)4MoS2MoS2Mo(CO)4]^2^-中S(b)→M(0)电荷迁移与M(0)→Mo(VI)电荷迁移之间有较明显的相互偶合; 在[(CO)4MS2WS2]^2^-中S(b)→W(VI)与M(0)→W(VI)电荷迁移、S(t)→W(VI)与M(0)→W(VI)电荷迁移之间也分别存在明显的相互偶合, 说明了它们存在强的电子离域。本系列簇合物中二核簇的电子离域程度比三核簇强。  相似文献   

19.
The reactions of half-sandwich diselenolate Mo and W complexes Cp#M(NO)(SePh)2 (M = Mo; Cp# = Cp (1a), MeCp (1b); M = W; Cp# = Cp (1c)) with (Norb)Mo(CO)4, Ni(COD)2 and Fe(CO)5 have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)4 in PhMe gave the bimetallic complexes: CpMo(NO)(-SePh)2Mo(CO)4 (2a), MeCpMo(NO)(-SePh)2Mo(CO)4 (2b) and CpW(NO)(-SePh)2Mo(CO)4 (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)5 gave heterobimetallic complexes CpMo(CO)(-SePh)2Fe(CO)3 (3a) and CpW(NO)(-SePh)2Fe(CO)3 (3c). Ni(COD)2 reacts with two equivalents of (1a), (1b) and (1c) to give [CpMo(NO)(-SePh)2]2Ni (4a), [MeCpMo(NO)(-SePh)2]2Ni (4b) and [CpW(NO)(-SePh)2]2Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., 1H-n.m.r., 13C-n.m.r. and EI-MS spectroscopy.  相似文献   

20.
By the additional reaction of binuclear compounds (Me4N)2M2S4 (TDT)2 (M = Mo, W; H2TDT= H2CH3C6H3S2) with mononuclear cuprous complex, two new M-Cu-S clusters Mo2Cu2S4(TDT)2-(PPh3 )2·CH3CH2OH (1) and W2Cu2S4(TDT)2(PPh3)2·0.5CH3CH2OH-0.5H2O (2) have been prepared and characterized by IR, UV-Vis, 31P NMR spectroscopy, cyclic voltammetry and single crystal X-ray structure analysis . Both compounds crystallize in space group P 21 / n with lattice parameters a = 1.0956(3), b = 2.2072(3), c = 2.4340(3) nm, β= 100.36(2)°, V= 5.790(3) nm3 and Z = 4 for 1 and a = 1.0965(9),b= 2.2135(3), c = 2.4317(4) nm, β = 99.63(8)°, V= 5.819(8) nm3 and Z = 4 for 2. Both molecular structures contain a cubane-like cluster core [M2Cu2S4] (M = Mo, W) and their skeletons are almost the same except for M atoms. The syntheses, structures and spectrum characterizations of these two clusters are discussed. The third-order nonlinear optical (NLO) property of the two clusters was studied by the technique of forward degenerate four  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号