首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acoustic impedances of matching layers and their thicknesses are the most important and influential parameters in the performance of airborne ultrasonic transducers. In this paper, the optimum thicknesses of the matching layers of the narrow band transmitter ultrasonic transducer regarding transmission coefficient were determined by individual calculations using a genetic algorithm. The genetic algorithm was chosen because it is a powerful tool in the optimization domain. The results show that the permitted thickness variation is 0.0005% for one matching layer, and this value can be increased to 0.0031%, which corresponds to the permitted thickness variation for five matching layers. Approximately 55% enhancement in the transmission coefficient is theoretically possible, and 42% enhancement was observed experimentally when the genetic algorithm was applied to calculate the matching layer thicknesses in place of the quarter wavelength equation that is conventionally used for the determination of layer thickness. To verify our approach, the effect of the thickness variation on the transmission coefficient has been investigated experimentally for three, four and five matching layers. The experimental results displayed good agreement with the theoretical predictions.  相似文献   

2.
The phenomenon of switching of the domain walls generated by frustrations in a two-layer ferromagnet-antiferromagnet nanostructure has been studied theoretically taking into account the energy of the uniaxial anisotropy beyond the exchange approximation. This phenomenon manifests itself in the fact that, as the magnetic field increases, the ferromagnetic layer divided into nanodomains by domain walls perpendicular to the layer plane becomes single-domain, and the antiferromagnetic layer that is uniform in weak fields is divided into 180° domains by the domain walls perpendicular to the layer. The phase diagram of the two-layer nanostructure has been constructed in the variables “the magnetic field-the characteristic distance between atomic step edges at the interface between the layers.”  相似文献   

3.
The step-terrace structures at the interface between the Si layer and the buried SiO2 layer of a Separation by IMplanted OXygen substrate has been observed by using atomic force microscopy (AFM) after removing the SiO2 and Si layers. The time evolution of the Si–SiO2 interface roughness during high-temperature annealing was analyzed by the scaling analysis of AFM data. The correlation length exhibited a nice correspondence to the size of square domain structures. Decreasing in the index of the length scale indicates that the growth mechanism changes as the annealing proceeds.  相似文献   

4.
The magnetic microstructure and domain wall distribution of antiferromagnetic α-Fe2O3 epitaxial layers is determined by statistical image analyses. Using dichroic spectromicroscopy images, we demonstrate that the domain structure is statistically invariant with thickness and that the antiferromagnetic domain structure of the thin films is inherited from the ferrimagnetic precursor layer one, even after complete transformation into antiferromagnetic α-Fe2O3. We show that modifying the magnetic domain structure of the precursor layer is a genuine way to tune the magnetic domain structure and domain walls of the antiferromagnetic layers.  相似文献   

5.
6.
The magnetic configurations induced by the growth process in a thin film with perpendicular magnetisation have been observed by magnetic force microscopy (MFM). The FePd thin film has been grown by molecular beam epitaxy. A high uniaxial chemical ordering of the alloy into the tetragonal L10 structure induces the development of a large perpendicular anisotropy. As the growth process is performed below the Curie temperature of the FePd alloy, domain nucleation occurs during the growth process. The magnetic configuration has been imaged in the as grown state. As the equilibrium size of the magnetic domains decreases when the thickness of the layer increases, the domains obtained from spontaneous nucleation at the beginning of the growth of the thin film are submitted to very large strains as the layer thickness increases. At low thicknesses (low strains), the domain wall instability gives rise to an undulation of the domain walls. Thereafter, it leads to the formation of well-defined magnetic fingers, thus giving birth to the coexistence of two length scale in the domain structure. A quantitative estimation of the strain leading to the fingering instability is obtained. Last, the implications of these observations on the kinetic of domain wall distortion in ultrathin layers are discussed.  相似文献   

7.
The problem of current-induced motion of a solitary domain wall in a free layer of the spin-valve structure is considered; the current flows perpendicularly to the structure layers. The action of the longitudinal and transverse components of the nonequilibrium polarization of the carriers injected into the free layer on the magnetization is analyzed.  相似文献   

8.
X. Han  N. M. Ghoniem 《哲学杂志》2013,93(11):1205-1225
Utilizing Fourier transforms, the elastic field of three-dimensional dislocation loops in anisotropic multilayer materials is developed. Green's functions and their derivatives, obtained first in the Fourier domain and then in the real domain by numerical inversion, are used in integrals to determine the elastic field of dislocation loops. The interaction forces between dislocations and free surfaces or interfaces in multilayer thin films are then investigated. The developed method is based on rigorous elasticity solutions for dislocations approaching to within one to two atomic planes from the interface. For a dislocation in one layer, the interface image force is determined mainly by the elastic moduli and thicknesses of neighbouring layers. When a dislocation approaches an interface between two layers, within 10–20 atomic planes, the image force changes rapidly. Interaction forces are then kept constant up to the interface. The model shows that, when a dislocation crosses an interface from a soft to a hard layer, additional external forces must be applied to overcome an elastic mismatch barrier. The developed method extends the concept of the Kohler barrier in 2D, and shows that the interface force barrier not only depends on the relative ratio of the elastic moduli of neighbouring layers, but also on the 3D shape of the dislocation, the number of interacting adjacent layers, and on layer thicknesses.  相似文献   

9.
We investigate thermally activated domain wall creep in a system consisting of two ultrathin Co layers with perpendicular anisotropy coupled antiferromagnetically through a 4 nm thick Pt spacer layer. The field driven dynamics of domain walls in the softer Co layer have been measured while keeping the harder Co layer negatively saturated. The effect of the interlayer interaction on the soft layer is interpreted in terms of an effective coupling field, HJHJ, which results in an asymmetry between the domain wall speeds measured under positive and negative driving fields. We show that creep theory remains valid to describe the observed wall motion when the effective coupling field is included in the creep velocity law as a component of the total field acting on the wall. Using the resultant modified creep expression, we determine a value for the effective coupling field which is consistent with that measured from the shift of the soft layer's minor hysteresis loop. The net antiferromagnetic coupling is attributed to a combination of RKKY and orange-peel coupling.  相似文献   

10.
Au/Co(4–8 ML)/Au single magnetic layers and Au(8 ML)/Co(4 ML)/Au(8 ML)/Co(8 ML)/Au bilayer were sequentially grown by electrodeposition on an Au(1 1 1) buffer layer electrodeposited on Si(1 1 1). The technique used in this work provides full control on the structure and the chemical composition of the different layers (no alloying) as well as on the chemistry at interfaces. scanning tunneling microscopy (STM) and atomic force microscopy (AFM) imaging and X-ray diffraction measurements show that atomically flat continuous Co(0 0 0 1) layers (4–8 ML) can be grown in epitaxy with the Au(1 1 1) substrate and that the 2 nm-thick spacer is also a continuous Au(1 1 1) layer. The Co ultrathin layers (4 and 8 ML) exhibit perpendicular magnetic anisotropy. The lateral magnetic homogeneity and magnetization reversal process have been investigated by scanning magneto-optical Kerr effect (MOKE) magnetometry and global Kerr microscopy. The correlation between magnetization switching behaviour in each layer of the Co-bilayer stack has been evidenced from in-depth sensitive MOKE measurements and microscopy. The strong coupling observed between the two Co layers is attributed to magnetostatic interaction at domain wall boundaries.  相似文献   

11.
Adsorption and desorption of fullerene on a single layer of graphene grown on SiC(0001) were investigated by photoemission spectroscopy (PES). No significant change in the band structure of graphene was observed after fullerene deposition on the graphene layer under vacuum conditions, and subsequent exposure to the air. After annealing the fullerene layer at 275 °C in a vacuum, complete desorption of fullerene was observed without any resulting damage to the graphene structure. The desorption temperature of fullerene was significantly higher than that of pentacene, indicating that fullerene layers show higher stability than pentacene as protection layers of graphene-based devices.  相似文献   

12.
In rotating detonation engines and explosion accidents, detonation may propagate in an inhomogeneous mixture with inert layers. This study focuses on detonation propagation in a stoichiometric H2/O2/N2 mixture with multiple inert layers normal to the detonation propagation direction. One- and two-dimensional simulations considering detailed chemistry are conducted. The emphasis is placed on assessing the effects of inert layer on detonation reinitiation/failure, detonation propagation speed, detonation cell structure and cell size. Specifically, the inert layer thickness and the spacing between two consecutive inert layers are varied. Either detonation reinitiation or failure across the inert layers is observed. It is found that successful detonation reinitiation occurs only at relatively small values of the inert layer thickness and spacing. For each given value of the inert layer spacing, there is a critical inert layer thickness above which detonation fails after crossing the inert layers. This critical inert layer thickness is found to decrease as the inert layer spacing increases. The detailed process of detonation reinitiation across the inert layers is analyzed. The interaction between the transverse shock waves is shown to induce local autoignition/explosion and eventually over-driven detonation development in the reactive layer. The averaged detonation propagation speed in the inhomogeneous mixture is compared to the CJ speed and very good agreement is achieved. This indicates that the inert layer does not affect the detonation propagation speed once successful detonation reinitiation happens. Unlike the detonation speed, the detonation cell structure and cell size are greatly affected by the inert layer results. For the first time, large cellular structure with size linearly proportional to the inert layer spacing is observed for detonation propagation across inert layers. Besides, a double cellular structure is observed for relatively large spacing between inert layers. The formation of double cellular structure is interpreted.  相似文献   

13.
The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions.  相似文献   

14.
We propose a mechanism to explain the electric instability often observed in modulation-doped heterostructures GaAs/AlGaAs when current is passed along the heterostructure layers. The instability is caused by hot electron transport in AlGaAs layer that is not only heavily doped, but also strongly compensated due to the presence of DX-centers. This layer contains a large-scale random potential of significant magnitude, which strongly affects electron transport. The heating of electrons in the percolation cluster net and electron transfer from the cluster into the random potential wells result in the appearance of latent negative differential conductivity causing the current instability. When the instability gives rise to the formation of a high electric field domain, one of the domain walls blocks the current flow through the two-dimensional electron gas. Experimental results supporting this mechanism are given.  相似文献   

15.
Fe/TaO x /Co trilayers were grown on Si(100)/SiO2 substrates and on tantalum buffer layers by a high vacuum magnetron sputtering system. The effects of both Ta buffer layer and tantalum-oxide barrier layer thickness on the structural and magnetic properties and the coupling of the ferromagnetic layers have been studied. It was observed that Ta improves the structural properties of the Fe layer resulting in an increased coercive field. For a barrier thickness of 4 nm a weak decoupling starts to appear between the ferromagnetic layers and a clear step formation is observed with increasing thickness. The minor hysteresis loops predict an interlayer coupling for thin barriers. The annealing of trilayers up to 250°C shows an increased coercivity for only the Fe layer. Annealing further at 400°C has the opposite effect of decreasing the coercivity, indicating intermixing at the interfaces of the Fe. The refractive index of the insulator barrier shows that the barrier layer is not totally in the form of tantalum-pentoxide.  相似文献   

16.
The effect of spin-polarized current on a domain structure in a magnetic junction consisting of two ferromagnetic metallic layers separated by an ultrathin nonmagnetic layer is studied within a phenomenological theory. The magnetization of one ferromagnetic layer (layer 1) is assumed to be fixed, while that of the other ferromagnetic layer (layer 2) can be freely oriented both parallel and antiparallel to the magnetization of layer 1. Layer 2 can be split into domains. Charge transfer from layer 1 to layer 2 is not attended with spin scattering by the interface but results in spin injection. Due to s-d exchange interaction, injected spins tend to orient the magnetization in the domains parallel to layer 1. This causes the domain walls to move and “favorable” domains to grow. The average magnetization current injected into layer 2 and its contribution to the s-d exchange energy are found by solving the continuity equation for carriers with spins pointing up and down. From the minimum condition for the total magnetic energy of the junction, the parameters of the periodic domain structure in layer 2 are determined as functions of current through the junction and magnetic field. It is shown that the spin-polarized current can magnetize layer 2 up to saturation even in the absence of an external magnetic field. The associated current densities are on the order of 105 A/cm2. In the presence of the field, its effect can be compensated by such a high current. Current-induced magnetization reversal in the layer is also possible.  相似文献   

17.
Several structures of dielectric spheres (glass) have been arranged and the electromagnetic absorption properties of the resulting materials have been measured in the microwave domain. In all cases strong rejected bands are present while keeping nearly transparent for other frequencies. The physical origin of the observed bands is studied by recording the spectra of the materials as they are grown layer by layer. These data show the appearance of a peak attributed to Bragg scattering generated by the spheres layers. Besides, higher order bands are developed over the resonances that are found even in the single layer of spheres. These are caused by a complex interaction of isolated sphere Mie modes and Bragg scattering in planes perpendicular (or nearly) to the incident radiation.  相似文献   

18.
We have investigated the initial growth of Sn and Ge1−xSnx layers on Ge(0 0 1) surface by using scanning tunneling microscopy. After the growth of a 0.035 ML-thick Sn layer at room temperature, Sn clusters lining vertically to a dimer row was observed. In the case of the 0.035-0.018 ML-thick Sn growth at 250 °C, the characteristic surface reconstruction with the step-edge undulation like a comb was observed. In the growth of a Ge0.994Sn0.006 layer at 250 °C, the multilayer polynuclear growth with a lot of two-dimensional small domain was observed. These surface reconstructions should be accounted for by the large compressive stress induced in the surface layer due to the incorporation of Sn atoms.  相似文献   

19.
The thickness dependence of different diluted antiferromagnetic Co1−yO layers on the exchange bias (EB) in ferro/antiferromagnetic Co/Co1−yO bilayers is investigated. For undiluted samples the EB decreases above a layer thickness of 5 nm whereas it increases and saturates for AFM layers thicker than 20 nm for diluted samples. These findings support the domain state model for EB.  相似文献   

20.
The influence of variable conductivity and thickness of two outer non-ferromagnetic layers on magnetization reversal of one central ferromagnetic layer is theoretically investigated. The model of a thin rigid 180°180° domain wall moving transversely through the axially magnetized ferromagnetic layer is used to calculate induced eddy currents in lamination from which the domain wall mobility is determined. The effect of asymmetric distribution of eddy currents around moving domain wall results in acceleration of the wall near the edge of the lamination. The known domain wall mobility in ferromagnetic lamination can then be used to determine either the conductivity or the thickness of deposited outer non-ferromagnetic layers as proposed in discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号