首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radiation-induced decomposition of PETN and TATB under extreme conditions   总被引:1,自引:0,他引:1  
We conducted a series of experiments investigating decomposition of secondary explosives PETN and TATB at varying static pressures and temperatures using synchrotron radiation. As seen in our earlier work, the decomposition rate of TATB at ambient temperature slows systematically with increasing pressure up to at least 26 GPa but varies little with pressure in PETN at ambient temperature up to 15.7 GPa, yielding important information pertaining to the activation complex volume in both cases. We also investigated the radiation-induced decomposition rate as a function of temperature at ambient pressure and 26 GPa for TATB up to 403 K, observing that the decomposition rate increases with increasing temperature as expected. The activation energy for the TATB reaction at ambient temperature was experimentally determined to be 16 +/- 3 kJ/mol.  相似文献   

2.
Recent high-pressure experiments conducted on xenon difluoride (XeF(2)) suggested that this compound undergoes several phase transitions up to 100 GPa, becoming metallic above 70 GPa. In this theoretical study, in contrast to experiment, we find that the ambient pressure molecular structure of xenon difluoride, of I4/mmm symmetry, remains the most stable one up to 105 GPa. In our computations, the structures suggested from experiment have either much higher enthalpies than the I4/mmm structure or converge to that structure upon geometry optimization. We discuss these discrepancies between experiment and calculation and point to an alternative interpretation of the measured cell vectors of XeF(2) at high pressure. At pressures exceeding those studied experimentally, above 105 GPa, the I4/mmm structure transforms to one of Pnma symmetry. The Pnma phase contains bent FXeF molecules, with unequal Xe-F distances, and begins to bring other fluorines into the coordination sphere of the Xe. Further compression of this structure up to 200 GPa essentially results in self-dissociation of XeF(2) into an ionic solid (i.e., [XeF](+)F(-)), similar to what is observed for nitrous oxide (N(2)O) at high pressure.  相似文献   

3.
We report simulations of adamantane by carefully combining ab initio and empirical approaches to enable simulations with internal degrees of freedom on crystalline adamantane up to a pressure of 26 GPa. Two sets of simulations, assuming the adamantane molecule as a rigid (RB) and flexible body (FB), have been carried out as a function of pressure up to 26 GPa to understand changes in the crystal structure as well as molecular structure. The flexible body simulations have been performed by including 6 lowest frequency internal modes (obtained from DFT calculations performed with Gaussian98) out of the total of 72. The calculated variation in c/a and V/V(0) from the RB and FB calculations as a function of pressure have been compared with the experimental curve. Other relevant thermodynamic and structural properties reported are the radial distribution functions, deviation in the position of a given type of atom with respect to its position at standard pressure, delta(s), cell parameters, volume, and energy. With an increase in pressure, three additional peaks are seen to develop gradually at three different pressures in the center of mass (com)-com radial distribution function (rdf). We attribute these changes to structural transformations (probably second-order phase transitions) which is consistent with the three phase transitions reported by Vijayakumar et al. for adamantane in the pressure range of 1 atm-15 GPa. Our simulations also show that these additional peaks in the rdf's are associated with the differences between opposite and parallel spin neighbors of Greig and Pawley as well as the crystallographic directional dependence of intermolecular distances in the first three shells of the neighbors. Also, the structural quantities from the RB calculation show considerable deviation from the FB calculation for pressures greater than 5 GPa, which suggests that the rigid body assumption for molecules may not be valid above this pressure.  相似文献   

4.
A high-pressure Raman spectroscopic study of phase transitions in thiourea is reported. The changes in the Raman spectra with increasing and decreasing pressure have been followed to a maximum pressure of approximately 11 GPa. We observe several changes in the spectra including splitting of modes, appearance of new modes, and sudden change in the slope of the frequency-pressure curve at several pressures. On the basis of this study, we propose the existence of three more transitions in this system to phases VII, VIII, and IX at approximately 1, 3, and 6.1 GPa, respectively, in addition to the V-VI phase transition at 0.35 GPa reported earlier. All the transitions have been found to be completely reversible. We interpret these changes in terms of symmetry-lowering phase transitions.  相似文献   

5.
The sound velocity in polycrystalline ice was measured as a function of pressure at room temperature to 100 GPa, through the phase field of ice VII and crossing the ice X transition, by Brillouin scattering in order to examine the elasticity, compression mechanism, and structural transitions in this pressure range. In particular, we focused on previously proposed phase transitions below 60 GPa. Throughout this pressure range, we find no evidence for anomalous changes in compressibility, and the sound velocities and elastic moduli do not exhibit measurable discontinuous shifts with pressure. Subtle changes in the pressure dependence of the bulk modulus at intermediate pressures can be attributed to high shear stresses at these compressions. The C(11) and C(12) moduli are consistent with previously reported results to 40 GPa and increase monotonically at higher pressures.  相似文献   

6.
High-pressure behavior of tetramethylsilane, one of the Group IVa hydrides, was investigated by Raman scattering measurements at pressures up to 142 GPa and room temperature. Our results revealed the phase transitions at 0.6, 9, and 16 GPa from both the mode frequency shifts with pressure and the changes of the full width half maxima of these modes. These transitions were suggested to result from the changes in the inter- and intra-molecular bonding of this material. We also observed two other possible phase transitions at 49-69 GPa and 96 GPa. No indication of metallization in tetramethylsilane was found with stepwise compression to 142 GPa.  相似文献   

7.
The thermal conductivity κ, heat capacity per unit volume ρc(p) and glass transition behaviour under pressure have been established for medium and high vinyl content polybutadiene PB with molecular weights 2600 and 100,000 and their highly cross-linked (ebonite) states obtained purely by high-pressure high-temperature treatments. Cross-linking eliminates the glass transitions and increases κ by as much as 50% at 295 K and 1 atm, and decreases ρc(p) to a limiting level close to that of the glassy state of PB, which is reached before the ultimate cross-link density is achieved. The pressure and temperature behaviours of κ are strongly changed by cross-links, which increases the effect of temperature but decreases the effect of pressure. We attribute these changes to a cross-linked induced permanent densification and consequential increase of phonon velocity simultaneously as conduction along polymer chains is disrupted. The glass transition temperatures for a time scale of 1 s are described to within 0.5 K by: T(g)(p) = 202.5 (1 + 2.94 p)(0.286) and T(g)(p) = 272.3 (1 + 2.57 p)(0.233) (p in GPa and T in K) up to 1 GPa, for PB2600 and PB100000, respectively, and can be estimated for medium and high vinyl content PBs with molecular weights in between by a constant, pressure independent, shift in temperature.  相似文献   

8.
Raman spectroscopic studies of dl-serine and dl-valine under static high pressures have been carried out up to 8 and 7 GPa, respectively to understand the behaviour of hydrogen bonds in these compounds. The discontinuous changes in the pressure dependence of some of the Raman modes of dl-serine at 1.5 GPa are interpreted to be due to molecular rearrangements brought about by changes in the hydrogen bonding interactions. Our results of the pressure dependence of N–H?O librational modes in dl-valine at 3 GPa suggest changes in the nature of hydrogen bonding interactions across this pressure.  相似文献   

9.
We have investigated the pressure-induced spectral changes and the proton exchange reactions of D(2)-H(2)O mixtures to 64 GPa using micro-Raman spectroscopy. The results show the profound difference in the rotational and vibrational Raman spectra of hydrogen isotopes from those of the pure samples, showing the vibrational modes at higher frequencies and continuing to increase with pressure without apparent turnover. This indicates the repulsive nature of D(2)-H(2)O interaction without hydrogen bonds between the two and, thus, interstitial fillings of D(2) molecules into the bcc-like ice lattice. The spectral analysis using the Morse potential yields a hydrogen bond distance of 0.734 ? at 6 GPa--slightly shorter than that in pure--attributed to the repulsive interaction. The pressure-dependent spectral changes suggest that the proton-ordering transition in the ice lattice occurs over a large pressure range between 28 and 50 GPa, which is substantially lower than that of pure ice (40-80 GPa). This again indicates the presence of high internal pressure arising from the repulsive interaction. The Raman spectra show evidences that the proton exchange occurs in various phases including in solid D(2) and H(2)O mixtures. Based on the time-dependent spectral changes, we obtained the proton exchange rates of k ~ 0.085 h(-1) at 0.2 GPa in fluid D(2) and water mixtures, k ~ 0.03 h(-1) and 0.003 h(-1) at 2 GPa and 4 GPa, respectively, in fluid D(2)-ice mixtures, and k ~ 10(-3) h(-1) at 8 GPa in solid D(2) and ice mixtures.  相似文献   

10.
A series of extended reversible phase transitions at approximately 0.1, 1.5, 2.0, and approximately 5 GPa was observed for the first time in the crystals of dl-cysteine by Raman spectroscopy. These are the first examples of the phase transitions induced by increasing pressure in the racemic crystal of an amino acid. In the crystals of the orthorhombic l-cysteine, a sequence of reversible structural changes in the pressure range between 1.1 and 3 GPa could be observed by Raman spectroscopy, instead of a single sharp phase transition at 1.9 GPa reported previously in ( Moggach, et al. Acta Crystallogr. 2006, B62, 296- 309 ). The role of the movements of the side -CH 2SH groups and of the changes in the hydrogen-bonding type in dl- and l-cysteine during the phase transitions with increasing pressure is discussed and compared with that on cooling down to 3 K.  相似文献   

11.
12.
Among diatomic molecular halogen solids, high pressure structures of solid chlorine (Cl(2)) remain elusive and least studied. We here report first-principles structural search on solid Cl(2) at high pressures through our developed particle-swarm optimization algorithm. We successfully reproduced the known molecular Cmca phase (phase I) at low pressure and found that it remains stable up to a high pressure 142 GPa. At 150 GPa, our structural searches identified several energetically competitive, structurally similar, and modulated structures. Analysis of the structural results and their similarity with those in solid Br(2) and I(2), it was suggested that solid Cl(2) adopts an incommensurate modulated structure with a modulation wave close to 2∕7 in a narrow pressure range 142-157 GPa. Eventually, our simulations at >157 GPa were able to predict the molecular dissociation of solid Cl(2) into monatomic phases having body centered orthorhombic (bco) and face-centered cubic (fcc) structures, respectively. One unique monatomic structural feature of solid Cl(2) is the absence of intermediate body centered tetragonal (bct) structure during the bco → fcc transition, which however has been observed or theoretically predicted in solid Br(2) and I(2). Electron-phonon coupling calculations revealed that solid Cl(2) becomes superconductors within bco and fcc phases possessing a highest superconducting temperature of 13.03 K at 380 GPa. We further probed the molecular Cmca → incommensurate phase transition mechanism and found that the softening of the A(g) vibrational (rotational) Raman mode in the Cmca phase might be the driving force to initiate the transition.  相似文献   

13.
We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109±29 A?(3), primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 5(12)6(2) water cages in MH-I to 4(3)5(12)6(3) cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures.  相似文献   

14.
High pressure is an important dimension for the emergent phenomena in transition metal oxides, including high-temperature superconductivity, colossal magnetoresistance, and magnetoelectric coupling. In these multiply correlated systems, the interplay between lattice, charge, orbital, and spin is extremely susceptible to external pressure. Magnetite (Fe(3)O(4)) is one of the oldest known magnetic materials and magnetic minerals, yet its high pressure behaviors are still not clear. In particular, the crystal structure of the high-pressure phase has remained contentious. Here, we investigate the pressure-induced phase transitions in Fe(3)O(4) from first-principles density-functional theory. It is revealed that the net magnetic moment, arising from two ferrimagnetically coupled sublattices in Fe(3)O(4), shows an abrupt drop when entering into the high-pressure phase but recovers finite value when the pressure is beyond 65.1 GPa. The origin lies in the redistribution of Fe 3d orbital occupation with the change of crystal field, where successive structural transitions from ambient pressure phase Fd3?m to high pressure phase Pbcm (at 29.7 GPa) and further to Bbmm (at 65.1 GPa) are established accurately. These findings not only explain the experimental observations on the structural and magnetic properties of the highly compressed Fe(3)O(4) but also suggest the existence of highly magnetized magnetite in the Earth's lower mantle.  相似文献   

15.
The refractive index of H2O ice has been measured to 120 GPa at room temperature using reflectivity methods. The refractive index increases significantly with pressure on initial compression and exhibits small changes with pressure at previously identified phase transitions. Pressure dependencies of the molecular polarizability show changing slopes in different pressure regions. A general molar refractivity analysis of this change in slope reveals features at 60 GPa due to the onset of the ice VII-X transition. Band gap closure in H2O ice is constrained by the dispersion data using a single oscillator dielectric model. Sample thickness measurements obtained from interference patterns yield pressure-volume relations in excellent agreement with those measured by x-ray diffraction.  相似文献   

16.
The unique intermolecular van der Waals force in emerging two-dimensional inorganic molecular crystals (2DIMCs) endows them with highly tunable structures and properties upon applying external stimuli. Using high pressure to modulate the intermolecular bonding, here we reveal the highly tunable charge transport behavior in 2DIMCs for the first time, from an insulator to a semiconductor. As pressure increases, 2D α-Sb2O3 molecular crystal undergoes three isostructural transitions, and the intermolecular bonding enhances gradually, which results in a considerably decreased band gap by 25 % and a greatly enhanced charge transport. Impressively, the in situ resistivity measurement of the α-Sb2O3 flake shows a sharp drop by 5 orders of magnitude in 0–3.2 GPa. This work sheds new light on the manipulation of charge transport in 2DIMCs and is of great significance for promoting the fundamental understanding and potential applications of 2DIMCs in advanced modern technologies.  相似文献   

17.
We investigated structural changes, phase diagram, and vibrational properties of hydrogen hydrate in filled-ice phase C(2) by using first principles molecular dynamics simulation. It was found that the experimentally reported "cubic" structure is unstable at low temperature and∕or high pressure: The "cubic" structure reflects the symmetry at high (room) temperature where the hydrogen bond network is disordered and the hydrogen molecules are orientationally disordered due to thermal rotation. In this sense, the "cubic" symmetry would definitely be lowered at low temperature where the hydrogen bond network and the hydrogen molecules are expected to be ordered. At room temperature and below 30 GPa, it is the thermal effects that play an essential role in stabilizing the structure in "cubic" symmetry. Above 60 GPa, the hydrogen bonds in the framework would be symmetrized and the hydrogen bond order-disorder transition would disappear. These results also suggest the phase behavior of other filled-ice hydrates. In the case of rare gas hydrate, there would be no guest molecules' rotation-nonrotation transition since the guest molecules keep their spherical symmetry at any temperature. On the contrary methane hydrate MH-III would show complex transitions due to the lower symmetry of the guest molecule. These results would encourage further experimental studies, especially nuclear magnetic resonance spectroscopy and neutron scattering, on the phases of filled-ice hydrates at high pressures and∕or low temperatures.  相似文献   

18.
In the present study, we extensively explored the crystal structures of Cu2O on increasing the pressure from 0 GPa to 24 GPa using the first-principles density functional calculations. A series of pressure-induced structure phase transitions of Cu2O are examined. The calculated results show that the phase transitions (Pn-3m phase → R-3m phase → P-3m1 phase) occur at 5 GPa and 12 GPa, respectively. The P-3m1 phase is found to be the metallic phase via band-gap closure under high pressure.  相似文献   

19.
We report the pressure‐induced crystallographic transitions and optical behavior of MAPbI3 (MA=methylammonium) using in situ synchrotron X‐ray diffraction and laser‐excited photoluminescence spectroscopy, supported by density functional theory (DFT) calculations using the hybrid functional B3PW91 with spin‐orbit coupling. The tetragonal polymorph determined at ambient pressure transforms to a ReO3‐type cubic phase at 0.3 GPa. Upon continuous compression to 2.7 GPa this cubic polymorph converts into a putative orthorhombic structure. Beyond 4.7 GPa it separates into crystalline and amorphous fractions. During decompression, this phase‐mixed material undergoes distinct restoration pathways depending on the peak pressure. In situ pressure photoluminescence investigation suggests a reduction in band gap with increasing pressure up to ≈0.3 GPa and then an increase in band gap up to a pressure of 2.7 GPa, in excellent agreement with our DFT calculation prediction.  相似文献   

20.
We have obtained the Raman spectra of dl-leucine crystal through a diamond anvil cell for pressures between 0 and 5 GPa. The observation of several anomalies in the regions of both the lattice mode and the internal mode suggests that the crystal undergoes a phase transition between 2.4 and 3.2 GPa. This phase transition is preceded by a gradual change of the molecular conformation of leucine molecules in the unit cell. We show that, up to 5 GPa, the dl-leucine crystal is more stable than the chiral l-leucine crystal because while the former presents only one phase transition in the 2.4–3.2 GPa interval, the latter presents three different transitions, the first of which is observed at 0.46 GPa. Additionally, when pressure is released to 0.0 GPa, the original Raman spectrum is recovered, indicating that the modification at high pressure on dl-leucine crystal is reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号