首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We present the temperature magnetic phase diagram of the compound DyFe4Ge2 determined from neutron diffraction data for the entire magnetically ordered regime. DyFe4Ge2 undergoes at a simultaneous structural and magnetic transition of second order (or weakly first order) followed by two subsequent isostructural first-order magnetic transitions at and Tic1=28K:
The re-entrant lock-in magnetic phase is stable in the high-temperature range Tic2TN and in the low-temperature range 1.5 K–Tic1 while the incommensurately modulated magnetic phase is sandwiched in the intermediate range Tic1Tic2 between the two commensurate phases. The wave vector q2 has a temperature-dependent length with a minimum in the middle of the incommensurate range and corresponds to a multiaxial amplitude modulated phase. Symmetry analysis leads for both propagation vectors in Cmmm to a twofold and fourfold splitting of the tetragonal Dy 2b site and the Fe 8i sites, respectively. The low temperature and the phases correspond to 3D canted magnetic structures described by the irreducible representations (Irreps) Γ2+Γ3 while the high-temperature q1 phase to 2D canted magnetic structures described by a single Irrep Γ2. The Tic2 transition is connected with reorientations of both Fe and Dy moments.  相似文献   

2.
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe1-xSnx, in the range x0.1. Our phase diagram is a result of magnetic and calorimetric measurements. We find that the separate magnetic and structural transitions in CoMnGe are tuned together as the level of Sn substitution is increased. We demonstrate the appearance of a hysteretic magnetostructural phase transition in the range x=0.04–0.055, similar to that observed in CoMnGe under hydrostatic pressure. From magnetisation measurements, we show that the isothermal entropy change associated with the magnetostructural transition can be as high as in a field of 1 T. However, the large thermal hysteresis in this transition () will limit its straightforward use in a magnetocaloric device.  相似文献   

3.
We have performed the in-plane magnetotransport measurements on the two-dimensional electron gas at the cleaved p-InAs (1 1 0) surface by deposition of Ag. The surface electron density Ns is determined from the Hall coefficient at . The coverage dependence of Ns is well explained by the assumption that each adsorbed Ag atom denotes one electron into InAs until the surface Fermi level reaches the adsorbate-induced donor level. The electron mobility μ is about and does not show a clear dependence on the coverage over . In the high-magnetic field regime of B>1/μ, Shubnikov–de Hass oscillations were observed. A beating pattern due to the strong spin–orbit interaction appears for high Ns. For lower Ns of , an apparent quantum Hall plateau for ν=4 and vanishing of the longitudinal resistivity were observed around .  相似文献   

4.
The tree-level contributions to the rare decays , , and are analyzed and compared to those occurring in , , and . It is shown that these purely long-distance contributions, arising from the exchange of a charged lepton, can be significant in B+ decays for an intermediate τ, potentially blurring the distinction between the modes used to extract B+τ+ντ and those used to probe the genuine short-distance and FCNC transitions. Numerically, the tree-level contributions are found to account for 98%, 12% and 14% of the total , , and rates, respectively.  相似文献   

5.
Two different reconstructions of the (01.2) face (Ca or CO3 terminated) of calcite (CaCO3) were studied: (i) R1 reconstruction: the outermost layer is based on the [0 1 0] × 1/3[2 1 1] rectangular mesh, which is symmetrical with respect to the c glide plane of the crystal, thus fulfilling the 2D symmetry of the face and (ii) R2 reconstruction: the outermost layer is based on a lozenge shaped mesh that does not respect the 2D symmetry of the face.The , , and slabs geometry optimizations of calcite (CaCO3) were performed either at DFT level or by using empirical potentials; the results obtained with these two different calculation methodologies are in good agreement. With respect to their arrangement in the bulk, the CO3 groups of the outermost layer are significantly rotated about the crystallographic a-axis and about the normal to the 01.2 plane; further, the thickness of the outermost layer is significantly lower than that of the underneath ones.The surfaces energies (γ) at 0 K, for relaxed and unrelaxed , , and faces, were determined either at DFT level or by using empirical potentials. Independently of the method of calculation employed, the stability order of the relaxed faces is < < < . Concerning the unrelaxed faces, whose energies were evaluated by using empirical potentials only, the stability order is instead < < < ; such different ordering shows the importance of geometry relaxation in the calculation of the surface energy. The values of the relaxed surface energies are , , and erg/cm2.  相似文献   

6.
The structure of light hypernuclei with strangeness S=−1 and −2 is investigated with the microscopic cluster model and the Gaussian expansion method (GEM). We emphasize that the cluster picture as well as the mean-field picture is invaluable to understand the structure of Λ hypernuclei, Σ hypernuclei and double Λ hypernuclei. A variety of aspects of Λ hypernuclei is demonstrated through a systematic study of p-shell hypernuclei (,, , , , , ) and sd-shell ones (, ): for example, the appearance of genuine hypernuclear states with new spatial symmetry which cannot be seen in ordinary nuclei, the glue-like role of the Λ particle which shrinks the size of nuclear core and thus reduces the B(E2) value, and the halo and skin structures in and etc. The typical light hypernucleus is thoroughly investigated, including its production, structure and decay. Precise three-body and four-body calculations of , and using GEM provide important information on the spin structure of the underlying ΛN interaction, by comparing with recent experimental data from γ-ray hypernuclear spectroscopy. The ΛΣ coupling effect is studied in and . The binding mechanism of is discussed together with the possible existence of , emphasizing the fact that the study of is useful for extracting information on the ΣN interaction differing from that from . A systematic study of double-Λ hypernuclei, constrained by the NAGARA data () within a four-body cluster model indicates that the recently observed Demachi–Yanagi event can be interpreted as the 2+ state of . The effect of hyperon mixing in and is investigated using one-boson-exchange potentials and quark-cluster-model interactions for the S=−2 sector. A close relation between nuclear deep hole states and hypernuclei is discussed, emphasizing the selection rule for fragmentation of the s-hole in light nuclei, which is promising for understanding the production mechanism of double-Λ and twin-Λ hypernuclei via Ξ-atomic capture.  相似文献   

7.
We performed the elastic neutron scattering experiments on the mixed compounds CeRh1-xCoxIn5, and found that doping Co into CeRhIn5 dramatically changes the antiferromagnetic (AF) structure. The incommensurate AF state with the propagation vector of observed in pure CeRhIn5 is suppressed with increasing x, and new AF states with an incommensurate and a commensurate modulations simultaneously develop near the AF quantum critical point: xc0.8. These results suggest that the AF correlations with the qc and q1 modulations enhanced in the intermediate Co concentrations may play a crucial role in the evolution of the superconductivity observed above x0.4.  相似文献   

8.
 The Einstein model to consider thermal effect in universal equations of state (UEOS) is modified. It is proposed that the zero-point vibration term should be deleted in a thermal UEOS, and the parameters cannot be directly taken as experimental data at a reference temperature, VR, BR, and , but their values at absolute zero temperature, V0, B0, and . An approach is proposed to solve V0, B0, and from VR, BR, and . The approaches are applied to three typical universal EOSs, including the Baonza, mGLJ and Morse EOSs. The numerical results show that the solved values of parameters are almost identical for different EOSs. And the thermo-physical properties predicted through different EOSs are almost identical at zero- and low-pressure conditions, once the same approach and input experimental data are used to solve the parameters. It is concluded that the prediction of thermo-physical properties at zero- and low-pressure conditions cannot be taken as the criteria to judge the applicability of a universal EOS.  相似文献   

9.
The multi-Higgs models having spontaneous CP violation (SPCPV) and natural flavor conservation (NFC) lead to a real CKM matrix V contradicting current evidence in favour of a complex V. This contradiction can be removed by using a generalized μτ (called 23) symmetry in place of the discrete symmetry conventionally used to obtain NFC. If the 23 symmetry is exact then the Higgs induced flavour changing neutral currents (FCNC) vanish as in the case of NFC. 23 breaking introduces SPCPV, a phase in V and suppressed FCNC among quarks. The FCNC couplings between i and j generations show a hierarchy with the result that the FCNC can have observable consequences in B mixing without conflicting with the mixing. Detailed fits to the quark masses and the CKM matrix are used to obtain the (complex) couplings and . Combined constraints from flavour and CP violations in the K, Bd, Bs, D mesons are analyzed within the model. They allow (i) relatively light Higgs, 100–150 GeV (ii) measurable extra contributions to the magnitudes and phases of the mixing amplitudes and (iii) the mixing at the current sensitivity level.  相似文献   

10.
Planar laser induced fluorescence (PLIF) of OH is used to examine flame stabilization in high pressure cryogenic flames formed by injecting a central jet of low speed liquid oxygen surrounded by a high speed gaseous stream of hydrogen or methane. In the LOx/GH2 experiments injection conditions are transcritical as the chamber pressure is above critical but the temperature is below critical . In the LOx/GCH4 experiments the chamber pressure and LOx injection temperature are below critical , . Hydrogen or methane are injected at room temperature LIF images delineate the flame edge in the injector nearfield. The two flames are stabilized in the vicinity of the liquid oxygen injector lip but the anchor point is found to lie closer to the lip in the LOx/GH2 case and its displacement from shot to shot is of a smaller amplitude than that corresponding to the LOx/GCH4 flame. Interpretation of these data is based on a previous analysis which indicates that stabilization is essentially controlled by a dimensionless group formed by comparing the lip thickness to the flame edge thickness Ψ = hs/δf. It is found that Ψ slightly exceeds unity in the LOx/GH2 case essentially fulfilling the stability condition while Ψ < 1 in the LOx/GCH4 case. In this last situation the flame is thicker than the characteristic thickness hs and it is therefore sensitive to the high speed methane stream. Anchoring is imperfect and the flame edge moves with the turbulent eddies shed from the lip. Global stabilization is achieved dynamically but the reactive layer is not well established and the large amplitude motion of the edge is a symptom of a possible lift-off. Theoretical estimates indicate that LOx/GCH4 flame stabilization requires a thicker lip size than the LOx/GH2 propellant couple.  相似文献   

11.
Rare decay modes , J/ψDπ++c.c., and are searched for using events collected with the BESII detector at the BEPC. No signal above background is observed. We present upper limits on the branching fractions of , B(J/ψDπ+)<7.5×10−5, and at the 90% confidence level.  相似文献   

12.
The present work aims at characterizing short-lived C1s(−1)π*(1) core-excited states of the OCS molecule based on the analysis of the vibrational fine structure and lineshape profiles of the high-resolution resonant Auger decay spectra recorded at the excitation energies along the C1sπ* resonance in the binding energy region 15–19 eV. Very different behavior in terms of lineshape and resonant enhancement is observed for the , and final states. This is explained by (1) the variation in the C–O bond lengths for the states involved in the electronic relaxation and (2) different contributions in terms of Mulliken population to the molecular orbitals determining the electronic character of the corresponding states. Since the final-state geometries are known from a number of previous experiments and ab initio calculations, the geometry of the C1s(−1)π*(1) intermediate states can be predicted in analogy with e.g. the N2, CO2 and N2O molecules.  相似文献   

13.
The high-resolution absolute photoionization cross sections for Ar, Kr, Xe and N2 in the inner-shell ionization region have been measured using a multi-electrode ion chamber and monochromatized synchrotron radiation. The energy ranges of the incident photons for the target gases were as follows: Ar: 242–252 eV (2p Rydberg excitation), Kr: 1650–1770 eV (near the 2p ionization thresholds), Xe: 665–720 eV (near the 3d ionization thresholds) and 880–1010 eV (near the 3p ionization thresholds), N2: 400–425 eV (N 1s excitation and ionization). It is the first time to measure the absolute ionization cross sections of Ar, Kr, Xe and N2 over the present energy ranges with the energy resolution of over 10,000. The natural lifetime widths of , , and resonances for Ar, resonance for Xe, and resonance for N2 have been obtained based on the cross sections determined. The ionization energies into the Ar+ (), Ar+ () and Xe+ () ionic states are also determined using the Rydberg formula.  相似文献   

14.
We report the observation of levels in the state of CH2 via optical–optical double resonance spectroscopy. Direct transitions between the lowest singlet state and the state are allowed by symmetry, but weak because they correspond to a two electron excitation in the single configuration approximation to the electronic wavefunction. The observed transitions involve sequential single photon absorptions at visible and near infrared wavelengths using state intermediate levels. Recent ab initio results (S.N. Yurchenko et al., J. Mol. Spectrosc. 208 (2001), 136) predicted the positions of some of the levels which are confirmed by the present results. The new spectra provide accurate energies for rotational levels in the , l = 0 level of the state.  相似文献   

15.
16.
Via a resistively detected NMR technique, the nuclear spin–lattice relaxation time T1 of 71Ga has been measured in a GaAs/AlGaAs heterostructure containing two weakly coupled 2D electron systems (2DES) at low temperatures, each at Landau level filling . Incomplete electronic spin polarization, which has been reported previously for low density 2DESs at , should facilitate hyperfine-coupled nuclear spin relaxation owing to the presence of both electron spin states at the Fermi level. Composite fermion theory suggests a Korringa-law temperature dependence: T1T=constant is expected for temperatures . Our measurements show that for temperatures in the range , T1 rises less rapidly with falling temperature than this law predicts. This may suggest the existence of alternate nuclear spin relaxation mechanisms in this system. Also, our data allows for an estimate of the composite fermion mass.  相似文献   

17.
Xiao-Tian Wang   《Physica A》2010,389(3):438-444
This paper deals with the problem of discrete time option pricing by the fractional Black–Scholes model with transaction costs. By a mean self-financing delta-hedging argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price of an option under transaction costs is obtained as timestep , which can be used as the actual price of an option. In fact, is an adjustment to the volatility in the Black–Scholes formula by using the modified volatility to replace the volatility σ, where is the Hurst exponent, and k is a proportional transaction cost parameter. In addition, we also show that timestep and long-range dependence have a significant impact on option pricing.  相似文献   

18.
Flavor changing neutral current processes are studied in the littlest Higgs model with T-parity. It is found that the logarithmic divergence reported earlier in Z boson flavor changing processes is exactly canceled by contributions from additional interaction terms of heavy fermions and the Z boson. Phenomenological impact on the processes is discussed.  相似文献   

19.
We propose a new realization of the elliptic quantum group equipped with the H-Hopf algebroid structure on the basis of the elliptic algebra . The algebra has a constructive definition in terms of the Drinfeld generators of the quantum affine algebra and a Heisenberg algebra. This yields a systematic construction of both finite- and infinite-dimensional dynamical representations and their parallel structures to . In particular we give a classification theorem of the finite-dimensional irreducible pseudo-highest weight representations stated in terms of an elliptic analogue of the Drinfeld polynomials. We also investigate a structure of the tensor product of two evaluation representations and derive an elliptic analogue of the Clebsch–Gordan coefficients. We show that it is expressed by using the very-well-poised balanced elliptic hypergeometric series .  相似文献   

20.
Dilepton production in pp and Au+Au nucleus–nucleus collisions at as well as in In+In and Pb+Au at is studied within the microscopic HSD transport approach. A comparison to the data from the PHENIX Collaboration at RHIC shows that standard in-medium effects of the ρ,ω vector mesons—compatible with the NA60 data for In+In at and the CERES data for Pb+Au at —do not explain the large enhancement observed in the invariant mass regime from 0.2 to 0.5 GeV in Au+Au collisions at relative to pp collisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号