首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a condition on a pair of the Alexander polynomials of knots which are realizable by a pair of knots with Gordian distance one. We show that there are infinitely many mutually disjoint infinite subsets in the set of the Alexander polynomials of knots such that every pair of distinct elements in each subset is not realizable by any pair of knots with Gordian distance one. As one of the subsets, we have an infinite set containing the Alexander polynomials of the trefoil knot and the figure eight knot. We also show that every pair of distinct Alexander polynomials such that one is the Alexander polynomial of a slice knot is realizable by a pair of knots of Gordian distance one, so that every pair of distinct elements in the infinite subset consisting of the Alexander polynomials of slice knots is realizable by a pair of knots with Gordian distance one. These results solve problems given by Y. Nakanishi and by I. Jong.  相似文献   

2.
Stefan Friedl 《Topology》2006,45(6):929-953
Every element in the first cohomology group of a 3-manifold is dual to embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement determines the genus of the knot in the 3-sphere. We show that the degrees of twisted Alexander polynomials give lower bounds on the Thurston norm, generalizing work of McMullen and Turaev. Our bounds attain their most concise form when interpreted as the degrees of the Reidemeister torsion of a certain twisted chain complex. We show that these lower bounds give the correct genus bounds for all knots with 12 crossings or less, including the Conway knot and the Kinoshita-Terasaka knot which have trivial Alexander polynomial.We also give obstructions to fibering 3-manifolds using twisted Alexander polynomials and detect all knots with 12 crossings or less that are not fibered. For some of these it was unknown whether or not they are fibered. Our work in particular extends the fibering obstructions of Cha to the case of closed manifolds.  相似文献   

3.
We introduce the norm and the order of a polynomial and of a homology lens space. We calculate the norm of the cyclotomic polynomials, and apply it to lens surgery problem for a knot whose Alexander polynomial is the same as an iterated torus knot.  相似文献   

4.
In this paper, we describe the twisted Alexander polynomial of twist knots for nonabelian SL(2,C)-representations and investigate in detail the coefficient of the highest degree term as a function on the representation space of the knot group. In particular, we introduce the notion of monic representation and discuss its relation to the fiberedness of knots.  相似文献   

5.
6.
In the previous paper, the author gave linear inequalities on the coefficients of the Alexander polynomials of alternating knots of genus two, which are best possible as linear inequalities on the coefficients of them. In this paper, we give infinitely many Alexander polynomials which satisfy the linear inequalities, but they are not realized by alternating knots.  相似文献   

7.
Kondo and Sakai independently gave a characterization of Alexander polynomials for knots which are transformed into the trivial knot by a single crossing change. The first author gave a characterization of Alexander polynomials for knots which are transformed into the trefoil knot (and into the figure-eight knot) by a single crossing change. In this note, we will give a characterization of Alexander polynomials for knots which are transformed into the 10132 knot (and into the (5,2)-torus knot) by a single crossing change. Moreover, this method can be applied for knots with monic Alexander polynomials.  相似文献   

8.
The colored Jones function of a knot is a sequence of Laurent polynomials that encodes the Jones polynomial of a knot and its parallels. It has been understood in terms of representations of quantum groups and Witten gave an intrinsic quantum field theory interpretation of the colored Jones function as the expectation value of Wilson loops of a 3-dimensional gauge theory, the Chern–Simons theory. We present the colored Jones function as an evaluation of the inverse of a non-commutative fermionic partition function. This result is in the form familiar in quantum field theory, namely the inverse of a generalized determinant. Our formula also reveals a direct relation between the Alexander polynomial and the colored Jones function of a knot and immediately implies the extensively studied Melvin–Morton–Rozansky conjecture, first proved by Bar–Natan and the first author about 10 years ago. Our results complement recent work of Huynh and Le, who also give a non-commutative formulae for the colored Jones function of a knot, starting from a non-commutative formula for the R matrix of the quantum group ; see Huynh and Le (in math.GT/0503296).  相似文献   

9.
We construct an endomorphism of the Khovanov invariant to prove H-thinness and pairing phenomena of the invariants for alternating links. As a consequence, it follows that the Khovanov invariant of an oriented nonsplit alternating link is determined by its Jones polynomial, signature, and the linking numbers of its components.  相似文献   

10.
Kishino's knot is not detected by the fundamental group or the bracket polynomial. However, we can show that Kishino's knot is not equivalent to the unknot by applying either the 3-strand bracket polynomial or the surface bracket polynomial. In this paper, we construct two non-trivial virtual knot diagrams, KD and Km, that are not detected by the 1-strand or the 2-strand bracket polynomial. From these diagrams, we construct two infinite families of non-classical virtual knot diagrams that are not detected by the bracket polynomial. Additionally, these virtual knot diagrams are trivial as flats.  相似文献   

11.
We show that the lower bounds for Betti numbers given in (J. Pure Appl. Algebra 157 (2001) 135) are equalities for a class of racks that includes dihedral and Alexander racks. We confirm a conjecture from the same paper by defining a splitting for the short exact sequence of quandle chain complexes. We define isomorphisms between Alexander racks of certain forms, and we also list the second and third homology groups of some dihedral and Alexander quandles.  相似文献   

12.
We say a knot k in the 3-sphere S3 has PropertyIE if the infinite cyclic cover of the knot exterior embeds into S3. Clearly all fibred knots have Property IE.There are infinitely many non-fibred knots with Property IE and infinitely many non-fibred knots without property IE. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property IE, then its Alexander polynomial Δk(t) must be either 1 or 2t2−5t+2, and we give two infinite families of non-fibred genus 1 knots with Property IE and having Δk(t)=1 and 2t2−5t+2 respectively.Hence among genus 1 non-fibred knots, no alternating knot has Property IE, and there is only one knot with Property IE up to ten crossings.We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.  相似文献   

13.
We show that every unframed knot type in has a representative obtained by the Legendrian lifting of an immersed plane curve. This gives a positive answer to the question asked by V.I.Arnold in [3]. The Legendrian lifting lowers the framed version of the HOMFLY polynomial [20] to generic plane curves. We prove that the induced polynomial invariant can be completely defined in terms of plane curves only. Moreover it is a genuine, not Laurent, polynomial in the framing variable. This provides an estimate on the Bennequin-Tabachnikov number of a Legendrian knot. Received: 17 April 1996 / Revised: 12 May 1999 / Published online: 28 June 2000  相似文献   

14.
Greg Friedman 《Topology》2004,43(1):71-117
By considering a (not necessarily locally-flat) PL knot as the singular locus of a PL stratified pseudomanifold, we can use intersection homology theory to define intersection Alexander polynomials, a generalization of the classical Alexander polynomial invariants for smooth or PL locally-flat knots. We show that the intersection Alexander polynomials satisfy certain duality and normalization conditions analogous to those of ordinary Alexander polynomials, and we explore the relationships between the intersection Alexander polynomials and certain generalizations of the classical Alexander polynomials that are defined for non-locally-flat knots. We also investigate the relations between the intersection Alexander polynomials of a knot and the intersection and classical Alexander polynomials of the link knots around the singular strata. To facilitate some of these investigations, we introduce spectral sequences for the computation of the intersection homology of certain stratified bundles.  相似文献   

15.
This paper deals with polynomial invariants of a class of oriented 3-string tangles and the knots (or links) obtained by applying six different closures. In Cabrera-Ibarra (2004) [1], expressions were given to compute the Conway polynomials of four different closures of the composition of two such 3-string tangles. By using the expressions and results from that reference, and using an algorithm developed on the basis of Giller?s calculations for 3-string tangles, we provide new results concerning six closures of 3-braids. Surprisingly, for 3-braids two of the closures turn out to be affine functions of the four previously defined. Among the contributions in this paper one finds computational tools to obtain the Conway polynomial of closures of 3-braids in terms of continuous fractions and their expansions. An interesting feature is that our calculations yield explicit, nonrecursive formulas in the case of 3-braids, thereby considerably lowering the time required to compute them. As a byproduct, explicit expressions are also given to obtain both numerators and denominators of continuous fractions in a nonrecursive way.  相似文献   

16.
Associated with each oriented link is the two variable Homflypt polynomial. The Morton–Franks–Williams (MFW) inequality gives rise to an expression for the Homflypt polynomial with MFW coefficient polynomials. These MFW coefficient polynomials are labeled in a braid-dependent manner and may be zero, but display a number of interesting relations. One consequence is an expression for the first three Laurent coefficient polynomials in z as a function of the other coefficient polynomials and three link invariants: the minimum v-degree and v-span of the Homflypt polynomial, and the Conway polynomial.  相似文献   

17.
Y. Miyazawa defined a polynomial invariant for a virtual link by using magnetic graph diagrams, which is related with the Jones-Kauffman polynomial. In this paper we show some relations of this polynomial for a virtual skein triple.  相似文献   

18.
In this paper, we prove that the Jones polynomial of a link diagram obtained through repeated tangle replacement operations can be computed by a sequence of suitable variable substitutions in simpler polynomials. For the case that all the tangles involved in the construction of the link diagram have at most k crossings (where k is a constant independent of the total number n of crossings in the link diagram), we show that the computation time needed to calculate the Jones polynomial of the link diagram is bounded above by O(nk). In particular, we show that the Jones polynomial of any Conway algebraic link diagram with n crossings can be computed in O(n2) time. A consequence of this result is that the Jones polynomial of any Montesinos link and two bridge knot or link of n crossings can be computed in O(n2) time.  相似文献   

19.
We express a basis for the vector space of finite type invariants of order less than or equal to three for an embedded handcuff graph in a 3-sphere in terms of the linking number, the Conway polynomial, and the Jones polynomial of the sublinks of the handcuff graph.  相似文献   

20.
Bourgoin defined the notion of a twisted link which corresponds to a stable equivalence class of links in oriented thickenings. It is a generalization of a virtual link. Some invariants of virtual links are extended for twisted links including the knot group and the Jones polynomial. In this paper, we generalize a multivariable polynomial invariant of a virtual link to a twisted link. We also introduce a quandle of a twisted link.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号