首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of new layer methods for solving semilinear parabolic equations and reaction‐diffusion systems is derived by using probabilistic representations of their solutions. These methods exploit the ideas of weak sense numerical integration of stochastic differential equations. In spite of the probabilistic nature these methods are nevertheless deterministic. A convergence theorem is proved. Some numerical tests are presented. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 490–522, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10020  相似文献   

2.
In this paper, the model of an electromechanical system, which is a system of linear differential equations, is studied. Haar wavelet collocation method (HWCM) is applied for finding the approximate solution of the model. HWCM reduces the system of the model into a matrix‐vector form that contains the unknown Haar coefficients, and these coefficients are easily calculated. To demonstrate the validity and applicability of HWCM, numerical solutions of the system for different parameter values in the system are presented. The obtained results demonstrate the efficiency and accuracy of the method. All of the computations are performed via a program written in Mathematica.  相似文献   

3.
In this paper, a collocation method based on the Bessel polynomials is introduced for the approximate solution of a class of linear integro‐differential equations with weakly singular kernel under the mixed conditions. The exact solution can be obtained if the exact solution is polynomial. In other cases, increasing number of nodes, a good approximation can be obtained with applicable errors. In addition, the method is presented with error and stability analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This article is concerned with a generalization of a functional differential equation known as the pantograph equation which contains a linear functional argument. In this article, we introduce a collocation method based on the Bessel polynomials for the approximate solution of the pantograph equations. The method is illustrated by studying the initial value problems. The results obtained are compared by the known results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

5.
Delay differential equations are of sufficient importance in modelling real-life phenomena to merit the attention of numerical analysts. In this paper, we discuss key features of delay differential equations (DDEs) and consider the main issues to be addressed when constructing robust numerical codes for their solution. We provide an introduction to the existing literature and numerical codes, and in particular we indicate the approaches adopted by the authors. We also indicate some of the unresolved issues in the numerical solution of DDEs. Communicated by J.C. Mason  相似文献   

6.
Delay differential equations are of sufficient importance in modelling real-life phenomena to merit the attention of numerical analysts. In this paper, we discuss key features of delay differential equations (DDEs) and consider the main issues to be addressed when constructing robust numerical codes for their solution. We provide an introduction to the existing literature and numerical codes, and in particular we indicate the approaches adopted by the authors. We also indicate some of the unresolved issues in the numerical solution of DDEs. Communicated by J.C. Mason  相似文献   

7.
In this paper we consider a certain approximation of fixed-points of a continuous operator A mapping the metric space into itself by means of finite dimensional ε(h)-fixed-points of A. These finite dimensional functions are obtained from functions defined on discrete space grid points (related to a parameter h→0) by applying suitably chosen extension operators ph. A theorem specifying necessary and sufficient conditions for existence of fixed-points of A in terms of ε(h)-fixed-points of A is given. A corollary which follows the theorem yields an approximate method for a fixed-point problem and determines conditions for its convergence. An example of application of the obtained general results to numerical solving of boundary value problems for delay differential equations is provided.Numerical experiments carried out on three examples of boundary value problems for second order delay differential equations show that the proposed approach produces much more accurate results than many other numerical methods when applied to the same examples.  相似文献   

8.
In this paper, an efficient and accurate numerical method is presented for solving two types of fractional partial differential equations. The fractional derivative is described in the Caputo sense. Our approach is based on Bernoulli wavelets collocation techniques together with the fractional integral operator, described in the Riemann‐Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations, which greatly simplifies the problem. By using Newton's iterative method, this system is solved and the solution of fractional partial differential equations is achieved. Some results concerning the error analysis are obtained. The validity and applicability of the method are demonstrated by solving four numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions much easier.  相似文献   

9.
A number of new layer methods for solving the Neumann problemfor semilinear parabolic equations are constructed by usingprobabilistic representations of their solutions. The methodsexploit the ideas of weak-sense numerical integration of stochasticdifferential equations in a bounded domain. In spite of theprobabilistic nature these methods are nevertheless deterministic.Some convergence theorems are proved. Numerical tests on theBurgers equation are presented.  相似文献   

10.
For the numerical solution of stochastic differential equations an economical Runge–Kutta scheme of second order in the weak sense is proposed. Numerical stability is studied and some examples are presented to support the theoretical results. AMS subject classification (2000)  60H10  相似文献   

11.
In this paper, a collocation method is presented to find the approximate solution of high‐order linear complex differential equations in rectangular domain. By using collocation points defined in a rectangular domain and the Bessel polynomials, this method transforms the linear complex differential equations into a matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. The proposed method gives the analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and the comparisons are made with existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on a computer using a program written in MATLAB v7.6.0 (R2008a). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Both sextic and septic B‐spline collocation algorithms are presented for the numerical solutions of the RLW equation. Numerical results resolve the fine structure of the single solitary wave propagation, two and three solitary waves interaction, and evolution of solitary waves. Comparison of the numerical results is done by the results of some earlier schemes mentioned in the article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 581–607, 2011  相似文献   

13.
This article presents a Taylor collocation method for the approximate solution of high‐order linear Volterra‐Fredholm integrodifferential equations with linear functional arguments. This method is essentially based on the truncated Taylor series and its matrix representations with collocation points. Some numerical examples, which consist of initial and boundary conditions, are given to show the properties of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

14.
We study systems with delay effect that contain additional algebraic relations. We propose semiexplicit numerical methods of the Rosenbrock type. We prove the solvability of equations of a numerical model and estimate the order of the global error. The chosen parameters provide the third order of the error.  相似文献   

15.
By the use of the Chebyshev series, a direct computational method for solving the higher order nonlinear differential equations has been developed in this paper. This method transforms the nonlinear differential equation into the matrix equation, which corresponds to a system of nonlinear algebraic equations with unknown Chebyshev coefficients, via Chebyshev collocation points. The solution of this system yields the Chebyshev coefficients of the solution function. An algorithm for this nonlinear system is also proposed in this paper. The method is valid for both initial-value and boundary-value problems. Several examples are presented to illustrate the accuracy and effectiveness of the method.  相似文献   

16.
A number of new layer methods for solving the Dirichlet problemfor semilinear parabolic equations are constructed by usingprobabilistic representations of their solutions. The methodsexploit the ideas of weak sense numerical integration of stochasticdifferential equations in a bounded domain. Despite their probabilisticnature these methods are nevertheless deterministic. Some convergencetheorems are proved. Numerical tests are presented.  相似文献   

17.
The purpose of this paper is to present a numerical algorithm for solving the Lane–Emden equations as singular initial value problems. The proposed algorithm is based on an operational Tau method (OTM). The main idea behind the OTM is to convert the desired problem to some operational matrices. Firstly, we use a special integral operator and convert the Lane–Emden equations to integral equations. Then, we use OTM to linearize the integral equations to some operational matrices and convert the problem to an algebraic system. The concepts, properties, and advantages of OTM and its application for solving Lane–Emden equations are presented. Some orthogonal polynomials are also used to reduce the volume of computations. Finally, several experiments of Lane–Emden equations including linear and nonlinear terms are given to illustrate the validity and efficiency of the proposed algorithm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The Local Linearization (LL) approach for the numerical solution of stochastic differential equations (SDEs) is extended to general scalar SDEs, as well as to non-autonomous multidimensional SDEs with additive noise. In case of autonomous SDEs, the derivation of the method introduced gives theoretical support to one of the previously proposed variants of the LL approach. Some numerical examples are given to demonstrate the practical performance of the method.  相似文献   

19.
In this paper, the problem of solving the one-dimensional parabolic partial differential equation subject to given initial and non-local boundary conditions is considered. The approximate solution is found using the radial basis functions collocation method. There are some difficulties in computing the solution of the time dependent partial differential equations using radial basis functions. If time and space are discretized using radial basis functions, the resulted coefficient matrix will be very ill-conditioned and so the corresponding linear system cannot be solved easily. As an alternative method for solution, we can use finite-difference methods for discretization of time and radial basis functions for discretization of space. Although this method is easy to use but an accurate solution cannot be provided. In this work an efficient collocation method is proposed for solving non-local parabolic partial differential equations using radial basis functions. Numerical results are presented and are compared with some existing methods.  相似文献   

20.
In this paper, the sinc‐collocation method (SCM) is investigated to obtain the solution of the nonlinear fractional order differential equations based on the relatively new defined fractional derivative, beta‐derivative. For this purpose, a theorem is proved for the approximate solution obtained from the SCM. Moreover, convergence analysis of the SCM is presented. To show the efficiency and the simplicity of the proposed method, some examples are solved, and the results are compared with the exact solutions of the considered equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号