首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide ( L ) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln2(hfac)5(O2CPhCl)( L )3] ? 2 H2O (hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion, O2CPhCl?=3‐chlorobenzoate anion) and mononuclear [Ln(hfac)3( L )2] complexes were obtained by using rare‐earth ions with either large (LnIII=Pr, Gd) or small (LnIII=Y, Yb) ionic radius, respectively, whereas the use of TbIII that possesses an intermediate ionic radius led to the formation of a binuclear complex of formula [Tb2(hfac)4(O2CPhCl)2( L )2]. Antiferromagnetic interactions have been observed in the three dinuclear compounds by using an extended empirical method. Photophysical properties of the coordination complexes have been studied by solid‐state absorption spectroscopy, whereas time‐dependent density functional theory (TD‐DFT) calculations have been carried out on the diamagnetic YIII derivative to build a molecular orbital diagram and to reproduce the absorption spectrum. For the [Yb(hfac)3( L )2] complex, the excitation at 19 600 cm?1 of the HOMO→LUMO+1/LUMO+2 charge‐transfer transition induces both line‐shape emissions in the near‐IR spectral range assigned to the 2F5/22F7/2 (9860 cm?1) ytterbium‐centered transition and a residual charge‐transfer emission around 13 150 cm?1. An efficient antenna effect that proceeds through energy transfer from the singlet excited state of the tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide chromophore is evidence of the YbIII sensitization.  相似文献   

2.
Tetranuclear, intensely blue‐coloured CuI complexes were synthesised in which two Cu2X3? units (X=Br or I) are bridged by a dicationic GFA (guanidino‐functionalised aromatic) ligand. The UV/Vis spectra show a large metal‐to‐ligand charge‐transfer (MLCT) band around 638 nm. The tetranuclear “low‐temperature” complexes are in a temperature‐dependent equilibrium with dinuclear CuI “high‐temperature” complexes, which result from the reversible elimination of two CuX groups. A massive thermochromism effect results from the extinction of the strong MLCT band upon CuX elimination with increasing temperature. For all complexes, quantum chemical calculations predict a small and method‐dependent energy difference between the possible electronic structures, namely CuI and dicationic GFA ligand (closed‐shell singlet) versus CuII and neutral GFA ligand (triplet or broken‐symmetry state). The closed‐shell singlet state is disfavoured by hybrid‐DFT functionals, which mix in exact Hartree–Fock exchange, and is favoured by larger basis sets and consideration of a polar medium.  相似文献   

3.
Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10?5 m ) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m ). The preorganization strategy enhances the water oxidation rate by two‐orders of magnitude to 125 s?1, as it facilitates the diffusion‐controlled rate‐limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.  相似文献   

4.
A rare example of a mononuclear complex [(bpy)2Ru(L1?H)](ClO4), 1 (ClO4) and dinuclear complexes [(bpy)2Ru(μ‐L1?2H)Ru(bpy)2](ClO4)2, 2 (ClO4)2, [(bpy)2Ru(μ‐L2?2H)Ru(bpy)2](ClO4)2, 3 (ClO4)2, and [(bpy)2Ru(μ‐L3?2H)Ru(bpy)2](ClO4)2, 4 (ClO4)2 (bpy=2,2′‐bipyridine, L1=2,5‐di‐(isopropyl‐amino)‐1,4‐benzoquinone, L2=2,5‐di‐(benzyl‐amino)‐1,4‐benzoquinone, and L3=2,5‐di‐[2,4,6‐(trimethyl)‐anilino]‐1,4‐benzoquinone) with the symmetrically substituted p‐quinone ligands, L, are reported. Bond‐length analysis within the potentially bridging ligands in both the mono‐ and dinuclear complexes shows a localization of bonds, and binding to the metal centers through a phenolate‐type “O?” and an immine/imminium‐type neutral “N” donor. For the mononuclear complex 1 (ClO4), this facilitates strong intermolecular hydrogen bonding and leads to the imminium‐type character of the noncoordinated nitrogen atom. The dinuclear complexes display two oxidation and several reduction steps in acetonitrile solutions. In contrast, the mononuclear complex 1 + exhibits just one oxidation and several reduction steps. The redox processes of 1 1+ are strongly dependent on the solvent. The one‐electron oxidized forms 2 3+, 3 3+, and 4 3+ of the dinuclear complexes exhibit strong absorptions in the NIR region. Weak NIR absorption bands are observed for the one‐electron reduced forms of all complexes. A combination of structural data, electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations is used to elucidate the electronic structures of the complexes. Our DFT results indicate that the electronic natures of the various redox states of the complexes in vacuum differ greatly from those in a solvent continuum. We show here the tuning possibilities that arise upon substituting [O] for the isoelectronic [NR] groups in such quinone ligands.  相似文献   

5.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

6.
The dinuclear Cu(II) complexes [Cu2(L1)2(mb)]?ClO4 ( 1 ) and [Cu2(L2)2(mb)]?ClO4 ( 2 ) (HL1 = 2‐[(2‐diethylaminoethylimino)methyl]phenol; HL2 = 2‐[1‐(2‐diethylaminoethylimino)propyl]phenol; mb = 4‐methylbenzoate) were synthesized and characterized using X‐ray crystal structure analysis and spectroscopic methods. Complexes 1 and 2 are dinuclear with distorted square pyramidal Cu (II) geometries, where Schiff base coordinates with tridentate (N,N,O) chelating mode and mb bridges two metal centres. Optimized structures and photophysical properties of ligands and complexes were calculated using density functional theory and time‐dependent density functional theory methods using B3LYP functional with 6‐31G (d,p) and LanL2MB basis sets. Interactions of the complexes with bovine serum albumin (BSA) and human serum albumin (HSA) were studied using UV–visible absorption and fluorescence spectroscopies and the calculated values of association constants (M?1) are 1.7 × 105 ( 1 –BSA), 5.7 × 105 ( 2 –BSA), 1.6 × 105 ( 1 –HSA) and 6.9 × 105 ( 2 –HSA). Interactions of the complexes with calf thymus DNA were also investigated and the binding affinities are 1.4 × 105 and 1.6 × 105 M?1 for 1 and 2 , respectively. Both complexes catalytically oxidize 3,5‐di‐tert‐butylcatechol to 3,5‐di‐tert‐butylbenzoquinone in the presence of molecular oxygen.  相似文献   

7.
The syntheses and crystal structures of eight lanthanide complexes with formula [Ln(2,5‐DCB)x(phen)y] are reported, which are characterized via single‐crystal, powder X‐ray diffraction, elemental analysis, IR spectroscopy, thermogravimetric analysis, photoluminescence measurement, and DC/AC magnetic measurement. These eight complexes are isostructural, and possess a discrete dinuclear structure. The adjacent dinuclear molecules are linked by the hydrogen bonding interactions into a one‐dimensional (1D) supramolecular chain. The neighboring 1D chains are further extended into a two‐dimensional (2D) supramolecular layer by the π–π stacking interactions. The photoluminescent properties of complexes 1 (NdIII), 2 (SmIII), 3 (EuIII), 5 (TbIII), 6 (DyIII), and 8 (YbIII) were investigated. Magnetic investigations also reveal the presence of ferromagnetic interactions in complexes 4 (GdIII), 6 (DyIII), and 7 (ErIII). Additionally, complex 6 (DyIII) demonstrates field‐induced slow magnetic relaxation behavior.  相似文献   

8.
Two new flexible extended dialdehydes (H2hpdd and H2pdd) with different functional pendant arms (? CH2CH2PhOH and ? CH2CH2Ph) have been synthesized and reacted with 1,2‐bis(2‐aminoethoxy)ethane to prepare Schiff‐base macrocyclic complexes in the presence of a ZnII‐ion template. As a result, two preorganized dinuclear ZnII intermediates ( 1 and 2 ), as well as two 42‐membered folded [2+2] macrocyclic dinuclear ZnII complexes ( 3 and 4 ), were produced. The central zinc ions in compounds 1 – 4 showed distinguishable coordination patterns with the dialdehydes and the [2+2] macrocyclic ligands, in which a subtle pH‐adjustment function of the two pendant arms (with or without the phenolic hydroxy group) was believed to play a vital role. Furthermore, cation‐ and anion‐recognition experiments for complexes 3 and 4 revealed that they could selectively recognize acetate ions by the formation of 1:1 stoichiometric complexes, as verified by changes in their UV/Vis and MS (ESI) spectra and even by the naked eye.  相似文献   

9.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

10.
Stable Mn2+ mono‐ and binuclear complexes containing pentadentate 6,6′‐((methylazanediyl)bis(methylene))dipicolinic acid coordinating units give remarkably high relaxivities due to the presence of two inner‐sphere water molecules. The mononuclear derivative binds human serum albumin (HSA) with an association constant of 3372 M ?1, which results in the replacement of the coordinated water molecules by donor atoms of protein residues. The dinuclear analogue also binds HSA while leaving one of the Mn2+ centres exposed to the solvent with two coordinated water molecules. Thus, this complex shows remarkably high relaxivities upon protein binding (39.0 mM ?1 s?1 per Mn, at 20 MHz and 37 °C).  相似文献   

11.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Ever since the first example of a double‐decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single‐molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in LnIII‐Pc‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear TbIII‐Pc multiple‐decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular TbIII?TbIII distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of TbIII‐Pc‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of TbIII‐Pc multiple‐decker complexes.

  相似文献   


13.
A redox series of cyclometalated platinum complexes based on a dinuclear motif linked by acetamidato (aam) bridging ligands, [Pt2(μ‐aam)2(ppy)2] (ppy?=2‐phenylpyridinate ion), has been synthesized. The complexes in this series are easily oxidized and reduced by both electrochemical and chemical methods, and this is accompanied by multistep changes in their optical properties, that is, multiple color changes and luminescence. Isolation of the complexes and the structural determination of three oxidation states, +2, +2.33, and +3, have been achieved. The mixed‐valent complex, with an average oxidation state of +2.33, forms a trimer based on the dinuclear motif. The mixed‐valent complex has a characteristic color owing to intervalence transitions in the platinum chain. In contrast, the divalent complex exhibits strong red phosphorescence originating from a triplet metal‐metal‐to‐ligand charge transfer (3MMLCT) state. This study demonstrates the unique chromic behavior of a redox‐active and luminescent platinum complex.  相似文献   

14.
Four new dinuclear copper(II) complexes have been synthesized and have the general formula [Cu2(L)(H2O)2], where L = GLYDTO [N,N′‐bis(carboxymethyl)dithiooxamide], ALADTO [N,N′‐bis(carboxyethyl)dithiooxamide], VALDTO [N,N′‐bis(1‐carboxy‐2‐methylpropyl)dithiooxamide] and LEUDTO [N,N′‐bis(1‐carboxy‐3‐methylbutyl)dithiooxamide]. The complexes were characterized by elemental analysis as well as by IR, electronic and EPR spectroscopy. These techniques provided evidence for the presence of the CuNO2S chromophore. Magnetic susceptibility measurements on all the complexes in the range 4–300 K show the existence of a dominant antiferromagnetic interaction with ?J values greater than 300 cm?1. Thermal decomposition behaviour of the complexes was studied by thermogravimetry.  相似文献   

15.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

16.
A series of six‐ and seven‐membered expanded‐ring N‐heterocyclic carbene (er‐NHC) gold(I) complexes has been synthesized using different synthetic approaches. Complexes with weakly coordinating anions [(er‐NHC)AuX] (X?=BF4?, NTf2?, OTf?) were generated in solution. According to their 13C NMR spectra, the ionic character of the complexes increases in the order X?=Cl?<NTf2?<OTf?<BF4?. Additional factors for stabilization of the cationic complexes are expansion of the NHC ring and the attachment of bulky substituents at the nitrogen atoms. These er‐NHCs are bulkier ligands and stronger electron donors than conventional NHCs as well as phosphines and sulfides and provide more stabilization of [(L)Au+] cations. A comparative study has been carried out of the catalytic activities of five‐, six‐, and seven‐membered carbene complexes [(NHC)AuX], [(Ph3P)AuX], [(Me2S)AuX], and inorganic compounds of gold in model reactions of indole and benzofuran synthesis. It was found that increased ionic character of the complexes was correlated with increased catalytic activity in the cyclization reactions. As a result, we developed an unprecedentedly active monoligand cationic [(THD‐Dipp)Au]BF4 (1,3‐bis(2,6‐diisopropylphenyl)‐3,4,5,6‐tetrahydrodiazepin‐2‐ylidene gold(I) tetrafluoroborate) catalyst bearing seven‐membered‐ring carbene and bulky Dipp substituents. Quantitative yields of cyclized products were attained in several minutes at room temperature at 1 mol % catalyst loadings. The experimental observations were rationalized and fully supported by DFT calculations.  相似文献   

17.
A series of 12 dinuclear complexes [Ln2Cl6(μ‐4,4′‐bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, ( 1 – 12 , respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4′‐bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4‐bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln‐N‐MOFs ${\hbox{}{{\hfill 2\atop \hfill \infty }}}$ [Ln2Cl6(4,4′‐bipy)3] ? 2(4,4′‐bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, ( 1 , 4 – 8 ) were determined, showing an antenna effect through a ligand–metal energy transfer. The highest efficiency of luminescence is observed for the terbium‐based compound 7 displaying a high quantum yield (QY of 86 %). Excitation with UV light reveals typical emission colors of lanthanide‐dependent intra 4f–4f‐transition emissions in the visible range (TbIII: green, EuIII: red, SmIII: salmon red, DyIII: yellow). For the GdIII‐ and YIII‐containing compounds 6 and 1 , blue emission based on triplet phosphorescence is observed. Furthermore, ligand‐to‐metal charge‐transfer (LMCT) states, based on the interaction of Cl? with EuIII, were observed for the EuIII compound 5 including energy‐transfer processes to the EuIII ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln‐independent quantum yields in the related MOFs.  相似文献   

18.
Two series of new dinuclear rare‐earth metal alkyl complexes supported by indolyl ligands in novel μ‐η211 hapticities are synthesized and characterized. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equivalent of 3‐(tBuN?CH)C8H5NH ( L1 ) in THF gives the dinuclear rare‐earth metal alkyl complexes trans‐[(μη211‐3‐{tBuNCH(CH2SiMe3)}Ind)RE(thf)(CH2SiMe3)]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C?N group is transferred to the amido group by alkyl CH2SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μη211 bonding modes, forming the dinuclear rare‐earth metal alkyl complexes. When L1 is reduced to 3‐(tBuNHCH2)C8H5NH ( L2 ), the reaction of [Yb(CH2SiMe3)3(thf)2] with 1 equivalent of L2 in THF, interestingly, generated the trans‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (major) and cis‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (minor) complexes. The catalytic activities of these dinuclear rare‐earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio‐ and stereoselectivities for isoprene 1,4‐cis‐polymerization.  相似文献   

19.
Ligand L was synthesized and then coordinated to [Ln(hfac)3] ? 2 H2O (LnIII=Tb, Dy, Er; hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion) and [Ln(tta)3]?2 H2O (LnIII=Eu, Gd, Tb, Dy, Er, Yb; tta?=2‐thenoyltrifluoroacetonate) to give two families of dinuclear complexes [Ln2(hfac)6( L )] ? C6H14 and [Ln2(tta)6( L )] ? 2 CH2Cl2. Irradiation of the ligand at 37 040 cm?1 and 29 410 cm?1 leads to tetrathiafulvalene‐centered and 2,6‐di(pyrazol‐1‐yl)‐4‐pyridine‐centered fluorescence, respectively. The ligand acts as an organic chromophore for the sensitization of the infrared ErIII (6535 cm?1) and YbIII (10 200 cm?1) luminescence. The energies of the singlet and triplet states of L are high enough to guarantee an efficient sensitization of the visible EuIII luminescence (17 300–14 100 cm?1). The EuIII luminescence decay can be nicely fitted by a monoexponential function that allows a lifetime estimation of (0.49±0.01) ms. Finally, the magnetic and luminescence properties of [Yb2(hfac)6( L )] ? C6H14 were correlated, which allowed the determination of the crystal field splitting of the 2F7/2 multiplet state with MJ=±1/2 as ground states.  相似文献   

20.
The facile and tunable preparation of unique dinuclear [(L?)Pd?X?Pd(L?)] complexes (X=Cl or N3), bearing a ligand radical on each Pd, is disclosed, as well as their magnetochemistry in solution and solid state is reported. Chloride abstraction from [PdCl( NNOISQ )] ( NNOISQ =iminosemiquinonato) with TlPF6 results in an unusual monochlorido‐bridged dinuclear open‐shell diradical species, [{Pd( NNO ISQ)}2(μ‐Cl)]+, with an unusually small Pd‐Cl‐Pd angle (ca. 93°, determined by X‐ray). This suggests an intramolecular d8–d8 interaction, which is supported by DFT calculations. SQUID measurements indicate moderate antiferromagnetic spin exchange between the two ligand radicals and an overall singlet ground state in the solid state. VT EPR spectroscopy shows a transient signal corresponding to a triplet state between 20 and 60 K. Complex 2 reacts with PPh3 to generate [Pd(NNOISQ)(PPh3)]+ and one equivalent of [PdCl( NNOISQ )]. Reacting an 1:1 mixture of [PdCl( NNOISQ )] and [Pd(N3)( NNOI SQ)] furnishes the 1,1‐azido‐bridged dinuclear diradical [{Pd( NNO ISQ)}21‐N;μ‐N3]+, with a Pd‐N‐Pd angle close to 127° (X‐ray). Magnetic and EPR measurements indicate two independent S=1/2 spin carriers and no magnetic interaction in the solid state. The two diradical species both show no spin exchange in solution, likely because of unhindered rotation around the Pd?X?Pd core. This work demonstrates that a single bridging atom can induce subtle and tunable changes in structural and magnetic properties of novel dinuclear Pd complexes featuring two ligand‐based radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号