首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The anion‐templated synthesis of a rotaxane structure, incorporating the new naphthalimide triazolium motif, is described and the interlocked host shown to exhibit selective, uni‐directional, anion‐induced shuttling. Initial pseudorotaxane investigations demonstrate the ability of a naphthalimide triazolium threading component to form interpenetrated assemblies with counter‐anion‐dependent co‐conformations. 1H NMR studies reveal that the shuttling behaviour of the analogous rotaxane host system is controlled by selective anion binding and by the nature of the solvent conditions. Complete macrocycle translocation only occurs upon the recognition of the smaller halide anions (chloride and bromide). The rotaxane solid‐state crystal structure in the presence of chloride is in agreement with the solution‐phase co‐conformation. The sensitivity of the axle naphthalimide absorbance band to the position of the macrocycle component within the interlocked structure enabled the molecular motion to be observed by UV/Vis spectroscopy, and the chloride‐induced shuttling of the rotaxane was reversed upon silver hexafluorophosphate addition.  相似文献   

2.
A heteroditopic [2]rotaxane consisting of a calix[4]diquinone–isophthalamide macrocycle and 3,5‐bis‐amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane’s interlocked cavity together with Na+, K+, NH4+ and Ba2+ cation recognition capabilities are elucidated by 1H NMR and UV‐visible spectroscopic titration experiments. Upon binding of Ba2+, molecular displacement of the axle’s positively charged pyridinium group from the rotaxane’s macrocyclic cavity occurs, whereas the monovalent cations Na+, K+ and NH4+ are bound without causing significant co‐conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.  相似文献   

3.
The synthesis and anion‐recognition properties of the first halogen‐bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen‐bonding axle component, which is stoppered with water‐solubilizing permethylated β‐cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)‐based macrocycle component. 1H NMR anion‐binding titrations in D2O reveal the halogen‐bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free‐energy calculations. Photo‐physical investigations demonstrate the ability of the interlocked halogen‐bonding host to sense iodide in water, through enhancement of the macrocycle component’s RuII metal–ligand charge transfer (MLCT) emission.  相似文献   

4.
5.
Bromide is best : The first [2]rotaxane incorporating the triazolium anion‐binding motif is prepared using bromide anion templation. Preliminary anion‐binding investigations reveal that the rotaxane exhibits the rare selectivity preference for bromide over chloride ions.

  相似文献   


6.
A new, versatile chloride-anion-templating synthetic pathway is exploited for the preparation of a series of eight new [2]rotaxane host molecules, including the first sulfonamide interlocked system. (1)H NMR spectroscopic titration investigations demonstrate the rotaxanes' capability to selectively recognise the chloride anion in competitive aqueous solvent media. The interlocked host's halide binding affinity can be further enhanced and tuned through the attachment of electron-withdrawing substituents and by increasing its positive charge. A dicationic rotaxane selectively binds chloride in 35% water, wherein no evidence of oxoanion binding is observed. NMR spectroscopy, X-ray structural analysis and computational molecular dynamics simulations are used to account for rotaxane formation yields, anion binding strengths and selectivity trends.  相似文献   

7.
8.
The interaction between imidazolium cations and coordinating anions is investigated through the anion‐templated assembly of interpenetrated and interlocked structures. The orientation of the imidazolium motif with respect to anion binding, and hence the hydrogen bond donor arrangement, was varied in acyclic receptors, interpenetrated assemblies, and the first mono‐imidazolium interlocked systems. Their anion recognition properties and co‐conformations were studied by solution‐phase 1H NMR investigations, solid‐state structures, molecular dynamics simulations, and density functional theory calculations. Our findings suggest that the imidazolium‐anion binding interaction is dominated by electrostatics with hydrogen‐bonding contributions having weak orientational dependence.  相似文献   

9.
    
The synthesis and anion binding properties of the first rotaxane host system to bind and sense anions purely through halogen bonding, is described. Through a combination of polarized iodotriazole and iodotriazolium halogen bond donors, a three‐dimensional cavity is created for anion binding. This rotaxane incorporates a luminescent rhenium(I) bipyridyl metal sensor motif within the macrocycle component, thus enabling optical study of the anion binding properties. The rotaxane topology was confirmed by single‐crystal X‐ray structural analysis, demonstrating halogen bonding between the electrophilic iodine atoms and chloride anions. In 50 % H2O/CH3CN solvent mixtures the rotaxane host exhibits strong binding affinity and selectivity for chloride, bromide, and iodide over a range of oxoanions.  相似文献   

10.
11.
12.
    
The unprecedented application of a chiral halogen‐bonding [3]rotaxane host system for the discrimination of stereo‐ and E/Z geometric isomers of a dicarboxylate anion guest is described. Synthesised by a chloride anion templation strategy, the [3]rotaxane host recognises dicarboxylates through the formation of 1:1 stoichiometric sandwich complexes. This process was analysed by molecular dynamics simulations, which revealed the critical synergy of halogen and hydrogen bonding interactions in anion discrimination. In addition, the centrally located chiral (S)‐BINOL motif of the [3]rotaxane axle component facilitates the complexed dicarboxylate species to be sensed via a fluorescence response.  相似文献   

13.
The synthesis of an all‐halogen‐bonding rotaxane for anion recognition is achieved by using active‐metal templation. A flexible bis‐iodotriazole‐containing macrocycle is exploited for the metal‐directed rotaxane synthesis. Endotopic binding of a CuI template facilitates an active‐metal CuAAC iodotriazole axle formation reaction that captures the interlocked rotaxane product. Following copper‐template removal, exotopic coordination of a more sterically demanding rhenium(I) complex induces an inversion in the conformation of the macrocycle component, directing the iodotriazole halogen‐bond donors into the rotaxane’s interlocked binding cavity to facilitate anion recognition.  相似文献   

14.
15.
Halogen‐bonding (XB) interactions were exploited in the solution‐phase assembly of anion‐templated pseudorotaxanes between an isophthalamide‐containing macrocycle and bromo‐ or iodo‐functionalised pyridinium threading components. 1H NMR spectroscopic titration investigations demonstrated that such XB interpenetrated assemblies are more stable than analogous hydrogen bonding (HB) pseudorotaxanes. The stability of the anion‐templated halogen‐bonded pseudorotaxane architectures was exploited in the preparation of new halogen‐bonding interlocked catenane species through a Grubbs’ ring‐closing metathesis (RCM) clipping methodology. The catenanes’ anion recognition properties in the competitive CDCl3/CD3OD 1:1 solvent mixture revealed selectivity for the heavier halides iodide and bromide over chloride and acetate.  相似文献   

16.
17.
18.
19.
The synthesis of a novel pH‐sensitive hetero[4]rotaxane molecular machine through a self‐sorting strategy is reported. The original tetra‐interlocked molecular architecture combines a [c2]daisy chain scaffold linked to two [2]rotaxane units. Actuation of the system through pH variation is possible thanks to the specific interactions of the dibenzo‐24‐crown‐8 (DB24C8) macrocycles for ammonium, anilinium, and triazolium molecular stations. Selective deprotonation of the anilinium moieties triggers shuttling of the unsubstituted DB24C8 along the [2]rotaxane units.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号