首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variations of125Sb valency states in HCl solutions were investigated by the use of the N-benzoyl-N-phenyl-hydroxylamine (BPHA) extraction method.125Sb(V) is completely reduced to Sb(III) by one hour refluxing in conc. HCl.125Sb(III) is gradually oxidized to Sb(V) in solutions of low HCl concentrations by the effects of their own radiations. Natural light promotes such oxidation reactions. By utilizing such oxidation-reduction effects125Sb(V) can be easily prepared from125Sb(III) and also125Sb(III) can be prepared by the reduction of Cl aq . Their valency states were stable on keeping them in brown-colored bottles at 6M HCl concentrations.  相似文献   

2.
Abstract

The mechanisms and kinetics of oxidation of ascorbate, AH?, by Ni(III)Li aq and by LiNi(III) (HPO4)2 ? complexes (L1 = meso-(5,12)-7,7,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; L2 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane) in neutral aqueous solutions have been investigated.

The oxidation of ascorbate by the LiNi(III) (HPO4)2 ? and Ni(III)L1 aq proceeds via two consecutive reactions well separated in time. The products of the first reaction are the A.? radical anion and the corresponding Ni(II) complex. The oxidations by the LiNi(III)(HPO4)2 ? complexes proceed via the outer sphere mechanism, whereas the detailed mechanism of reaction of Ni(III)L1 aq cannot be determined. The rate of reaction decreases with the increase in the concentration of phosphate, thus indicating that LiNi(III)(HPO4)(H2O)+ and LiNi(III)OH2+ are stronger oxidizing agents than LiNi(III)(HPO4)? 2.

The oxidation of ascorbate by Ni(III)L2 aq proceeds via three consecutive reactions which are well separated in time. Thus the results clearly point out that this process occurs via the inner sphere mechanism. The first transient observed is tentatively identified as L2(H2O)Ni(II)(A.?)2+, i.e., an unexpected complex of the ascorbate anion radical. Also in this process the last transient observed is the A.? anion radical. The stabilization of the ascorbyl radical in a transient complex might be of biological significance.  相似文献   

3.
The cross sections for formation of metastable state of 178Hf (178m2Hf, 574.215 keV, 31 y) and 179Hf (179m2Hf, 362.55 keV, 25.05 d) through reactions induced by 14.8 ± 0.2 MeV neutrons on natural hafnium were measured for the first time. The monoenergetic neutron beam was produced via the 3H(d, n)4He reaction on ZF-300-II Intense Neutron Generator at Lanzhou University. Induced gamma activities were measured by a gamma-ray spectrometer with high-purity germanium (HPGe) detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The neutron fluence were determined by the cross section of 93Nb(n, 2n)92mNb reaction. The neutron energy in the measurement were by the cross section ratios of 90Zr(n, 2n)89m+gZr and 93Nb(n, 2n)92mNb reactions.  相似文献   

4.
HoClTe2O5: A Telluriumdioxide‐rich Holmium(III) Chloride Oxotellurate(IV) While attempting to synthesize anionically derivatized holmium oxotellurates by reacting holmium chloride (HoCl3) with tellurium oxide (TeO3; molar ratio 1 : 3, 800°C 10 d) in evacuated silica ampoules, transparent, greenish yellow and coarse single crystals of holmium(III) chloride oxotellurate(IV) HoClTe2O5 (triclinic, P1; a = 762.07(6), b = 796.79(6), c = 1010.36(8) pm, α = 100.987(4), ß = 99.358(4), γ = 91.719(4)°; Z = 4) were obtained. The crystal structure contains eightfold coordinated (Ho1)3+ (only surrounded by oxygen atoms) and sevenfold coordinated (Ho2)3+ cations (surrounded by one chloride and six oxide anions). Each sort of holmium polyhedra convenes independently to chains along [100] by edge‐sharing which again combine alternately via O6 and O9 to form 2{[Ho2O10(Cl1)]15—} layers parallel (001). Each of the four crystallographically different Te4+ cations are surrounded by three close oxygen atoms (d(Te—O) = 188 — 195 pm) and always one more situated further away. The stereochemical activity of the non‐bonding electron pairs (“lone pairs”) leads to ψ1‐trigonal bipyramidal coordination figures. The ψ1‐tetrahedral [TeO3]2— basic units form discrete [Te2O5]2— doubles with ecliptic conformation which are arranged in a fish‐bone pattern parallel to (001) on both sides of the 2{[Ho2O10Cl]15—} layers. The coherence of the 2{[Ho2(Cl1)Te4O10]+} layers is exclusively maintained via Cl2—Te1 contacts with an extraordinary long distance of 335 pm. As (Cl1) belongs to the coordination sphere of (Ho2)3+ and (Cl2) is only surrounded by Te4+, the compound should be correctly named holmium(III) chloride oxochlorotellurate(IV) Ho2Cl[Te4O10Cl] (Z = 2).  相似文献   

5.
Mononuclear and Multiply Bridged Dinuclear Phthalocyaninates(1–/2–) of Yttrium by Solvent Controlled Condensation; Small Solvent Clusters as Ligands Green chlorophthalocyaninato(2–)yttrium(III), [Y(Cl)pc2–] forms when yttrium chloride is heated with o‐phthalonitrile in 1‐chloronaphthalene. Black cis‐di(chloro)phthalocyaninato(1‐)yttrium(III), cis[Y(Cl)2pc] is obtained as a stable intermediate by partial reduction. Both complexes are soluble in many O‐donor solvents and pyridine. The solubility in water is remarkable: [Y(Cl)pc2–] dissolves with green, cis[Y(Cl)2pc] with red‐violet color. Typical absorptions of the pc2– ligand are observed at 14800 and 29700 cm–1. A solvent dependent monomer‐dimer equilibrium is found for the pc radical. The monomer with absorptions at 12100 and 19900 cm–1 is favored in non‐polar solvents, while in polar solvents the dimer with absorptions at 8700, 13200 and 18600 cm–1 is preferred. cis‐Tri(dimethylformamide)chlorophthalocyaninato(2–)yttrium(III) etherate ( 1 ) crystallises from a solution of [Y(Cl)pc2–] in MeOH/dmf, cis‐tetra(dimethylsulfoxide)phthalocyaninato(2–)yttrium(III) chloride etherate methanol disolvate ( 2 ) from thf/dmso, μ‐di(chloro)‐μ‐di〈di(pyridine)(μ‐water)〉di(phthalocyaninato(2–)‐ yttrium(III)) ( 5 ) from py, and cis‐(chloro)pyridine(triphenylphosphine oxide)phthalocyaninato(2–)yttrium(III) semi‐etherate ( 3 ) is obtained from a solution of [Y(Cl)pc2–] and triphenylphosphine oxide in py. 1 condenses in MeOH yielding a (1 : 1)‐mixture ( 4 ) of μ‐di(chloro)di(〈trans‐(diwaterdimethanol)〉〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 a ) and μ‐di(chloro)di(dimethylformamide〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 b ); co‐ordinatively bound solvent clusters are in brakets. The structures of 1 – 5 have been established by X‐ray crystallography. Apart from 3 with hepta‐co‐ordinated yttrium, the metal ion prefers octa‐co‐ordination, and the bond arrangement around Y3+ is always a distorted quadratic antiprism. In the dinuclear complexes obtained by solvent controlled condensation both antiprisms share an edge by two μ‐Cl atoms in 4 , while in 5 the antiprisms are face‐shared by two trans positioned μ‐Cl atoms and μ‐O atoms, respectively. In 5 , the bent b〈{py}2(μ‐H2O)〉 cluster is stabilised by a combined interplanar bonding of pyridine by short N…H–O bonds (d(N…O) = 2.664(7) Å; 2.81(2) Å) and strong van‐der‐Waals interactions with the ecliptic pc2– ligands. 4 a and 4 b contain the dimeric methanol cluster 〈(MeOH)2〉, and 4 a in addition the cyclic heterotetrameric trans‐diwaterdimethanol cluster, transc〈(H2O)2(MeOH)2〉. The neutral clusters co‐ordinatively bound to the Y atom are compared with structurally established cluster‐anions of type 〈(OMe)(MeOH)〉, linear l〈(OMe)(MeOH)2, cyclic c〈(OH)3(H2O)33–, b〈{H2O}2(μ‐O)〉2–, and b{H2O}2(μ‐F)〉.  相似文献   

6.
The reduction of 3-oxatricyclo[3.2.1.02,4]octane-endo-6-carbonitrile by lithium aluminum hydride is completed by the formation of exo-2-hydroxy-4-azatricyclo[4.2.1.03,7]nonane with the structure confirmed (1) by the analysis of 1H, 13C, 14N, and 17O NMR spectra and the two-dimensional spectra (COSY-experiment); (2) by comparison with 1H and 13C NMR spectra of the corresponding oxygen analog of heterobrendane; (3) by the calculation of the vicinal constants for the spin-spin interaction in the molecules of both analogs by the MMX program; and (4) by transformation into N-(p-bromophenylsulfonyl)-exo-2-hydroxy-4-azatricyclo[4.2.1.03,7]nonane prepared by an alternative synthesis, viz., epoxidation of N-(p-bromophenylsulfonyl)bicyclo-[2.2.1]hept-2-en-endo-5-methylamine. The reduction of 3-oxatricyclo [3.2.1.02,4]octane-exo-6-carbonitrile affords the epoxide, 3-oxatricyclo[3.2.1.02,4]octane-exo-6-methylamine. Different behaviors of stereoisomers are discussed; analysis of the coefficients of the atomic orbitals in the MO LCAO equation (AM1 method) has been made, and the strengths of the C(SINGLE BOND)O bonds in the epoxy ring has been analyzed. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
The bis(chelated) complex of CrV(0) derived from the dianion (L2 ) of 2-ethyl-2-hydroxybutanoic acid is readily reduced to a bis(chelate of CrIII, featuring the monoanion (LH) [Cr V(0)(L2−)2]+4H++H2O+2e→[CrIII(OH2)2(LH 2]+ of this acid. Potentials estimated by Ghosh in 1993 for this 2e change, E0 (pH 0) 1.32 V, Eeff (pH 3.3) 0.93 V, are in accord with the nearly irreversible reductions of the Cr(V) species (in 1∶1 ligand buffer) by Fe2+, V02+, IrCl6 3 and I, whereas lower values reported by Bose in 1996, E0 (pH 0) 0.84 V, Eeff (pH 3.3) 0.45 V, are potentiometrically inconsistent with these conversions. A similar discrepancy is noted for potentials for Cr(V,IV) estimated in 1996, E0 (pH 0) 0.84 V, Eeff (pH 3.3) 0.46 V, which, wholly contrary to observation, predict that the reductions of excess Cr(V) to CR(IV) by Fe2+, V02+, and I are thermodynamically disfavored.  相似文献   

8.
The synthesis and characterization of (tBuPBP)Ni(OAc) ( 5 ) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe ( 1 ) is presented. An unexpected CO2 cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly-structured tetra-nickel cluster (tBuPBOP)2Ni4(μ-CO)2 ( 6 ). Mechanistic investigation of this reaction indicates a reductive scission of CO2 by O-atom transfer to the boron atom via a cooperative nickel-boron mechanism. The CO2 activation reaction produces a three-coordinate (tBuP2BO)Ni-acyl intermediate ( A ) that leads to a (tBuP2BO)−NiI complex ( B ) via a likely radical pathway. The NiI species is trapped by treatment with the radical trap (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to give (tBuP2BO)NiII2-TEMPO) ( 7 ). Additionally, 13C and 1H NMR spectroscopy analysis using 13C-enriched CO2 provides information about the species involved in the CO2 activation process.  相似文献   

9.
The reactions of [Re(CO)6]+, [FeCp(CO)2CS]+ and [FeCp(CNPh)3]+ with the metallo nitrile ylides [M{C+=N–C(H)CO2Et}(CO)5] (M = Cr, W) and the chromio nitrile imine [Cr{C+=N–NH}(CO)5] (generated by mono‐α‐deprotonation of the parent isocyanide complexes) to give neutral 5‐metallated 1,3‐oxazolin‐ ( 1 ), 1,3‐thiazolin‐ ( 2 ), imidazolin‐ ( 3 , 4 ), 1,3,4‐oxdiazolin‐ ( 5 ), 1,3,4‐thiadiazolin‐ ( 6 ) and 1,3,4‐triazolin‐2‐ylidene ( 8 ) chromium and tungsten complexes represent the first all‐organometallic versions of Huisgen’s 1,3‐dipolar cycloadditions. The formation of 6 and 8 is accompanied by partial decomposition to (OC)5Cr–C≡N–FeCpL2 {L = CO ( 7 ), CNPh ( 9 )}. The structures of 4a and 5 have been characterized by X‐ray diffraction.  相似文献   

10.
Zinc(II), cadmium(II) and mercury(II) complexes of thiourea (TU) and selenourea (SeU) of general formula M(TU)2Cl2 or M(SeU)2Cl2 have been prepared. The complexes were characterized by elemental analysis and NMR (1H, 13C, 15N, 77Se and 113Cd) spectroscopy. A low-frequency shift of the C=S resonance of thiones in 13C NMR and high-frequency shifts of N–H resonances in 1H and 15N NMR are consistent with sulfur or selenium coordination to the metal ions. The Se nucleus in Cd(SeU)2Cl2 in 77Se NMR is deshielded by 87?ppm on coordination, relative to the free ligand. In comparison, the analogous Zn(II) and Hg(II) complexes show deshielding by 33 and 50?ppm, respectively, indicating that the orbital overlap of Se with Cd is better. Principal components of 77Se and 113Cd shielding tensors were determined from solid-state NMR data.  相似文献   

11.
Guanine radicals are important reactive intermediates in DNA damage. Hydroxyl radical (HO.) has long been believed to react with 2′-deoxyguanosine (dG) generating 2′-deoxyguanosin-N1-yl radical (dG(N1-H).) via addition to the nucleobase π-system and subsequent dehydration. This basic tenet was challenged by an alternative mechanism, in which the major reaction of HO. with dG was proposed to involve hydrogen atom abstraction from the N2-amine. The 2′-deoxyguanosin-N2-yl radical (dG(N2-H).) formed was proposed to rapidly tautomerize to dG(N1-H).. We report the first independent generation of dG(N2-H). in high yield via photolysis of 1 . dG(N2-H). is directly observed upon nanosecond laser flash photolysis (LFP) of 1 . The absorption spectrum of dG(N2-H). is corroborated by DFT studies, and anti- and syn-dG(N2-H). are resolved for the first time. The LFP experiments showed no evidence for tautomerization of dG(N2-H). to dG(N1-H). within hundreds of microseconds. This observation suggests that the generation of dG(N1-H). via dG(N2-H). following hydrogen atom abstraction from dG is unlikely to be a major pathway when HO. reacts with dG.  相似文献   

12.
Studies on the Coordinative Behaviour of Potentially Four and Fivedentate Bis(salicylidene amino)-Ligands with Ions of the 3d-Elements. Fourdentate bis(salicylidene amino)-ligands (?ONΦCH2ΦNO? and ?ONΦOΦNO?, meaning of the abbreviations see text) with the centres of donor atoms connected by rigid, bifunctional residues, form polymeric complexes MeII(ONΦCH2ΦNO) and MeII(ONΦOΦNO) with cobalt(II), nickel(II), and copper(II). Among the cobalt(II) chelates the structure is uniformly tetrahedral, but the nickel(II) and copper(II) complexes contain square planar central atoms and such with a higher coordination number side by side. The potential fivedentate ligands ON3PPh3NO?, ?ON2O2NO?, and ?ON2S2NO? differ as to their coordinative behaviour. The coordination number of the complexes Ni(ON3PPh3NO) and Co(ON3PPh3NO) is five. On the other hand the compounds Co(ON2S2NO) and Co(ON2O2NO) are tetrahedral. No coordination of the ether or sulfide group is observed. Ni(ON2O2NO) has an octahedral structure which is produced by coordination polymerisation and possibly by coordination of the ether group. The new complexes are compared with the transition metal complexes of simple salicylaldimines.  相似文献   

13.
Equilibrium study on the mixed ligand complex formation of CuII with biguanide(Bg) and glycine (HG), indicated the formation of the complexes: Cu(Bg)2+, Cu(Bg) 2 2+ , Cu(Bg-H)(Bg)+, Cu(Bg-H)2, Cu(Bg)(OH)+, Cu(Bg-H)(OH); Cu(G)+, Cu(G)(OH), Cu(G)2; Cu(G)(Bg)+, Cu(G)(Bg-H); (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, and (G)Cu(Bg-2H)Cu(G). From the deprotonation constants of coordinated biguanide (Bg) in the complexes Cu(Bg)(OH)+, Cu(Bg-H)(Bg)+ and Cu(G)(Bg)+, the Lewis basicities of the coordinated ligand species (Bg-H)-, OH- and glycinate (G-) were found to be of the order: (Bg-H)-≫ OH- > G-. Bridging (N1-N4, N2-N5) tetradentate mode of coordination by biguanide species Bg, (Bg-H)- and (Bg2H)2- was indicated from the occurrence of biguanide-bridged dinuclear mixed ligand complexes (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, (G)Cu(Bg-2H)Cu(G) in the complexation equilibria.  相似文献   

14.
Tetramethyldivinyldisilazane‐(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X‐ray crystallography and in solution by multinuclear magnetic resonance spectroscopy (1H, 13C, 15N, 29Si, 31P and 195Pt NMR). Numerous signs of spin–spin coupling constants were determined by two‐dimensional heteronuclear shift correlations (HETCOR) and two‐dimensional 1H/1H COSY experiments. Isotope‐induced chemical shifts 1Δ12/13C(195Pt) were measured from 195Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as 199Hg or 207Pb, the “normal” shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
O(5S) metastable atom production is studied in a microwave induced plasma (2450 MHz, 320 W) as a function of pressure (0.5 to 10 Torr) and oxygen concentration in helium (0 to 15 % O2). O(5S) and He(3S) densities, electron temperature and electron density are determined. Measurements are performed by optical absorption for metastable species and by double probes for electron temperature and density.Results show that: -O(5S) density increases and reaches a maximum with increasing pressure and increasing oxygen concentration, then decreases, while He(3S) decreases continuously; -electron temperature decreases with oxygen concentration and with pressure; -electron density variation is a weak function of oxygen concentration and increases with pressure.According to the results obtained a mechanism for O(5S) production and destruction is proposed. Assuming a steadystate, the quenching rate constant of O(5S) by O2 was estimated to be: (1.2 ± 0.4) × 10−10 cm3 molecule−1 s−1.  相似文献   

16.
The reactions of metal carbonyl anions (M(CO)n?; M = Cr, Mn and Fe; n = 1–3) with n-heptane, water and methanol were studied with use of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an external ion source. The M(CO)n? ions were formed in the FT-ICR cell by collision-induced dissociation of the most abundant primary ion generated by electron impact of the appropriate metal carbonyl compound present in the external ion source. The M(CO)n? ions were allowed subsequently to undergo non-reactive collisions with argon in order to remove possible excess internal/translational energy prior to the ion/molecule reaction. Only the Cr(CO)3?, Mn(CO)3? and Fe(CO)2? ions react with n-heptane. This reaction proceeds by loss of H2 from the collision complex and the Cr(CO)3? and Fe(CO)2? ions react about three times more efficiently than the Mn(CO)3? ion. With water, Mn(CO)? and Fe(CO)3? are unreactive, whereas the other ions react by loss of one or two CO molecules from the collision complex. The rate of the reaction with water decreases in the order Cr(CO)3?, Fe(CO)2?, Cr(CO)2?, Fe(CO)?, Mn(CO)3? and Mn(CO)2?. With methanol, the Cr(CO)2? ion reacts by loss of two CO molecules from the collision complex, whereas loss of one CO molecule and elimination of CO + H2 occur in the reaction with Cr(CO)3?. Competing loss of CO and one or two H2 molecules occurs in the reactions of Mn(CO)3? and Fe(CO)2? with methanol. The rate of the reaction with methanol decreases in the order Cr(CO)3?, Fe(CO)2?, Cr(CO)2? and Mn(CO)3?.  相似文献   

17.
Seven discrete sugar‐pendant diamines were complexed to the {M(CO)3}+ (99mTc/Re) core: 1,3‐diamino‐2‐propyl β‐D ‐glucopyranoside ( L 1 ), 1,3‐diamino‐2‐propyl β‐D ‐xylopyranoside ( L 2 ), 1,3‐diamino‐2‐propyl α‐D ‐mannopyranoside ( L 3 ), 1,3‐diamino‐2‐propyl α‐D ‐galactopyranoside ( L 4 ), 1,3‐diamino‐2‐propyl β‐D ‐galactopyranoside ( L 5 ), 1,3‐diamino‐2‐propyl β‐(α‐D ‐glucopyranosyl‐(1,4)‐D ‐glucopyranoside) ( L 6 ), and bis(aminomethyl)bis[(β‐D ‐glucopyranosyloxy)methyl]methane ( L 7 ). The Re complexes [Re( L 1 – L 7 )(Br)(CO)3] were characterized by 1H and 13C 1D/2D NMR spectroscopy which confirmed the pendant nature of the carbohydrate moieties in solution. Additional characterization was provided by IR spectroscopy, elemental analysis, and mass spectrometry. Two analogues, [Re( L 2 )(CO)3Br] and [Re( L 3 )(CO)3Br], were characterized in the solid state by X‐ray crystallography and represent the first reported structures of Re organometallic carbohydrate compounds. Conductivity measurements in H2O established that the complexes exist as [Re( L 1 – L 7 )(H2O)(CO)3]Br in aqueous conditions. Radiolabelling of L 1 – L 7 with [99mTc(H2O)3(CO)3]+ afforded in high yield compounds of identical character to the Re analogues. The radiolabelled compounds were determined to exhibit high in vitro stability towards ligand exchange in the presence of an excess of either cysteine or histidine over a 24 h period.  相似文献   

18.
The yield and average cross section for the reactions11B(p, n)11C,12C(p, )13N,13C(p, n)13N, 12 12 C(d, n)13N,14N(p, )11C,16O(p, )13N,16O(d, n)17F,16O(t, n)18F, and18O(p, n)18F have been measured in different compounds. The charged particles were created in the samples themselves either through recoil by scattering of 14 MeV neutrons off hydrogen and deuterium, or by the (n, t) reaction on6Li using thermal neutrons. The yields of reactions12C(d, n);16O(p, );16O(t, n) and18O(p, n) have been measured using proton, deuteron and triton spectra generated by 14 MeV neutrons in the reactions D(n, p)2n;6Li(n, d);7Li(n, d) and10B(n, d);7Li(n, t) and10B(n, t), respectively.  相似文献   

19.
36Cl in soil samples from the Semipalatinsk Nuclear Test Site (former USSR) was measured at Kyushu University Tandem Laboratory (KUTL) by accelerator mass spectrometry (AMS) coupled with projectile X-ray detection (PXD) technique. The separation of competing 36S and 36Cl atomic isobars, was satisfactory by PXD technique. Measured 36Cl/Cl atom ratio was (5.0±0.6).10–10 and an average activity of 36Cl was calculated as (2.0±0.2) mBq/g, which is in a good agreement with that obtained by liquid scintillation counting (LSC) method previously. Currently developed AMS system at the Kyushu University can be applied for routine 36Cl analysis at 36Cl/Cl = 10–11 atom ratio level.  相似文献   

20.
Abstract

The stepwise complex formation between 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) with Co(II) and Mn(II) was studied by potentiometry at constant ionic strength 2.0 M (NaClO4) and T = (25.0 ± 0.1)°C, from pH measurements. Data of average ligand number (Bjerrum's function) were obtained from such measurements followed by integration to obtain Leden's function, F 0(L). Graphical treatment and matrix solution of simultaneous equations have shown two overall stability constants of mononuclear stepwise complexes for the Mn(II)/TRIS system (β1 = (5.04 ± 0.02) M?1 and β2 = (5.4 ± 0.5) M?2) and three for the Co(II)/TRIS system (β1 = (1.67 ± 0.02) × 102 M?1, β2 = (7.01 ± 0.05) × 103 M?2 and β3 = (2.4 ± 0.4) × 104 M?3). Slow spontaneous oxidation of Co(II) solutions by dissolved oxygen, accelerated by S(IV), occurs in a buffer solution TRIS/HTRIS+ 0.010/0.030 M, with a synergistic effect of Mn(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号