首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Photoinduced structural change (PSC) is a fundamental excited‐state dynamic process in chemical and biological systems. However, precise control of PSC processes is very challenging, owing to the lack of guidelines for designing excited‐state potential energy surfaces (PESs). A series of rationally designed butterfly‐like phosphorescent binuclear platinum complexes that undergo controlled PSC by Pt–Pt distance shortening and exhibit tunable dual (greenish‐blue and red) emission are herein reported. Based on the Bell–Evans–Polanyi principle, it is demonstrated how the energy barrier of the PSC, which can be described as a chemical‐reaction‐like process between the two energy minima on the first triplet excited‐state PES, can be controlled by synthetic means. These results reveal a simple method to engineer the dual emission of molecular systems by manipulating PES to control PSC.  相似文献   

2.
Novel blue‐emitting germanium‐containing poly(p‐phenylenevinylene) (PPV) derivatives with well‐defined conjugation lengths were synthesized via Wittig‐condensation polymerizations. The polymers can be color‐tuned by the introduction of various chromophores into the PPV‐based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red‐shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979–988, 2008  相似文献   

3.
4.
It is shown by optical spectroscopy that indigo molecules, most likely incorporated into the channels of the palygorskite host structure, are the solely colour centres in the ancient Maya Blue pigment — in use during the Maya cultural period in Yucatan and Guatemala. This study also shows that the blue colour of solid indigo shifts toward turquoise and greenish hues when fastened to the host; it is suggested that the corresponding spectral modifications originate from the energy when single indigo molecules undergo hydrogen bonding with the hydroxy‐groups in the channels (or in the open channels on the surface). Indeed artefacts from the Maya culture exhibit rather greenish than pure blue colours. Similarly a tetrachloro‐derivative of thioindigo forms hydrogen bonds with palygorskite, as evidenced by an again distinct colour change from red‐violet to blueish‐violet. Bulkier pigment molecules bearing hydroxy‐groups, such as anthrachinon derivatives, seem to directly react with the host surface, but without producing very significant colour shifts.  相似文献   

5.
Multi‐component organic nanocrystals that are comprised of two or more supramolecular building blocks can be used to extend the design and assembly scope of solid molecular materials. Herein, we report the use of ultrasonication to prepare halogen‐bonded stilbene‐based nano‐cocrystals that exhibit different photoemission properties, including one‐ and two‐phonon emission and fluorescence lifetimes, relative to those of macrodimensional crystals. The structural transformation from nano‐cocrystals into nanocrystals upon heating results in a luminescence red‐shift from greenish blue to yellow. The temperature‐dependent ratiometric luminescence may allow such nano‐cocrystals to be used as fluorescent sensors and thermosensitive materials.  相似文献   

6.
A series of luminescent cyclometalated platinum(Ⅱ)complexes,(C^N^N)Pt(C≡CR)[HC^N^N=4-(4-tolyl)-6-phenyl-2,2’-bipyridine;R=4-chlorophenyl(1),phenyl(2) and 4-tolyl(3)],were synthesized,and their spectroscopic properties have been examined.These complexes are brightly emissive both in fluid solution and in the solid state,attributed to triplet metal-to-ligand charge transfer(^3MLCT)state.The excited state energy can be tuned by ancillary acetylide ligands.The emission lifetimes in dichloromethand solution at room temperature were up to 1.64 μs and the emission quantum yields were in the range of 0.03-0.15.  相似文献   

7.
Efficient violet–blue‐emitting molecules are especially useful for applications in full‐color displays, solid‐state lighting, as well as in two‐photon absorption (TPA) excited frequency‐upconverted violet–blue lasing. However, the reported violet–blue‐emitting molecules generally possess small TPA cross sections. In this work, new 1,8‐diazapyrenes derivatives 3 with blue two‐photon‐excited fluorescence emission were concisely synthesized by the coupling reaction of readily available 1,4‐naphthoquinone O,O‐diacetyl dioxime ( 1 ) with internal alkynes 2 under the [{RhCl2Cp*}2]–Cu(OAc)2 (Cp*=pentamethylcyclopentadienyl ligand) bimetallic catalytic system. Elongation of the π‐conjugated length of 1,8‐diazapyrenes 3 led to the increase of TPA cross sections without the expense of a redshift of the emission wavelength, probably due to the rigid planar structure of chromophores. It is especially noteworthy that 2,3,6,7‐tetra(4‐bromophenyl)‐1,8‐diazapyrene ( 3c ) has a larger TPA cross section than those of other molecules reported so far. These experimental results are explained in terms of the effects of extension of the π‐conjugated system, intramolecular charge transfer, and reduced detuning energy.  相似文献   

8.
The geometries, energies, and electronic properties of a series of phosphorescent Pt(II) complexes including FPt, CFPt, COFPt, and NFPt have been characterized within density functional theory DFT calculations which can reproduce and rationalize experimental results. The properties of excited‐states of the Pt(II) complexes were characterized by configuration interaction with singles (CIS) method. The ground‐ and excited‐state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. In addition, we also have performed a triplet UB3LYP optimization for complex FPt and compared it with CIS method in the emission properties. The datum (562.52 nm) of emission wavelength for complex FPt, which were computed based on the triplet UB3LYP optimization excited‐state geometry, is not agreement with the experiment value (500 nm). The absorption and phosphorescence wavelengths were computed based on the optimized ground‐ and excited‐state geometries, respectively, by the time‐dependent density functional theory (TD‐DFT) methods. The results revealed that the nature of the substituent at the phenylpyridine ligand can influence the distributions of HOMO and LUMO and their energies. Moreover, the auxiliary ligand pyridyltetrazole can make the molecular structure present a solid geometry. In addition, the charge transport quality has been estimated approximately by the predicted reorganization energy (λ). Our result also indicates that the substitute groups and different auxiliary ligand not only change the nature of transition but also affect the rate and balance of charge transfer. By summarizing the results, we can conclude that the NFPt is good OLED materials with a solid geometry and a balanced charge transfer rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

9.
Aggregation‐induced photon upconversion (iPUC) based on control of the triplet energy landscape is demonstrated for the first time. When a triplet state of a cyano‐substituted 1,4‐distyrylbenzene derivative is sensitized in solution, no upconverted emission based on triplet–triplet annihilation (TTA) was observed. In stark contrast, crystalline solids obtained by drying the solution revealed clear upconverted emission. Theoretical studies unveiled an underlying switching mechanism: the excited triplets in solution immediately decay back to the ground state through conformational twisting around a C?C bond and photoisomerization, whereas this deactivation path is effectively inhibited in the solid state. The finding of iPUC phenomena highlights the importance of controlling excited energy landscapes in condensed molecular systems.  相似文献   

10.
N‐Benzyl aroyl‐S,N‐ketene acetals can be readily synthesized by condensation of aroyl chlorides and N‐benzyl 2‐methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid‐state emission and aggregation‐induced emission characteristics. Varying the substituent from electron‐donating to electron‐withdrawing enables the tuning of the solid‐state emission color from deep blue to red.  相似文献   

11.
Is the resonance‐based anionic keto form of oxyluciferin the chemical origin of multicolor bioluminescence? Can it modulate green into red luminescence? There is as yet no definitive answer from experiment or theory. The resonance‐based anionic keto forms of oxyluciferin have been proposed as a cause of multicolor bioluminescence in the firefly. We model the possible structures by adding sodium or ammonium cations and investigating the ground‐ and excited‐state geometries as well as the electronic absorption and emission spectra. A role for the resonance structures is obvious in the gas phase. The absorption and emission spectra of the two structures are quite different—one in the blue and another in the red. The differences in the spectra of the models are small in aqueous solution, with all the absorption and emission spectra in the yellow–green region. The resonance‐based anionic keto form of oxyluciferin may be one origin of the red‐shifted luminescence but is not the exclusive explanation for the variation from green (≈530 nm) to red (≈635 nm). We study the geometries, absorption, and emission spectra of the possible protonated compounds of keto(?1) in the excited states. A new emitter keto(?1)′‐H is considered.  相似文献   

12.
Bimetallic complexes have become an emerging hot topic in field of luminous applications in recent years. Unlike the traditional modification on a cyclometalated ligand, grafting an additional metal ion provides a novel approach to tune molecular conjugation as well as the spin orbital coupling (SOC). Herein, we demonstrate a new kind of binuclear platinum(II) complex Pt‐3 that possesses an asymmetric thiophenpyridine‐isoquinoline bridging ligand. Compared to its mononuclear analogues of Pt‐1 and Pt‐2, an extremely large redshift emission from 576 and 618 nm to 721 nm was observed in solution. Binding of two metal ions helps to enhance molecular planarity, extend conjugation and suppress excited state distortion. However, their quantum yields tend to remarkably decrease with increasing red‐shift emission as following the “energy gap law”. The relatively larger HOMO/LUMO separation that induced by the second platinum ion also decreases the oscillator strength at the lowest singlet state, and goes against the fast radiative decay process. Solution‐processed organic light‐emitting diodes (OLEDs) based on Pt‐1, Pt‐2 and Pt‐3 achieved external quantum efficiencies (EQEs) and luminance/radiant emittance of 13.6% and 13640 cd/m2, 3.5% and 3754 cd/m2, 0.9% and 7981 mW/Sr/m2 with the corresponding electroluminescent (EL) emission peaked at 580 nm, 625 nm and 708 nm, respectively. This work emphasizes the complement argument of the commonly largely reported symmetric binuclear configurations, and provides a new view to photophysical mechanism and design strategies for bimetallic species.  相似文献   

13.
Two diketopyrrolopyrrole derivatives ( DPP1 and DPP2 ) are used for generating multiple luminescent colors (yellow–orange–red–deep red) in solution, nanoparticle, aggregate and solid states through an aggregation‐induced emission (AIE) coupled excited‐state intramolecular proton transfer (ESIPT) process. They are potentially useful for bioimaging due to their good biocompatibility and large Stoke shifts.  相似文献   

14.
A novel Pt(II) terpyridine complex that has a nicotinamide moiety linked to the terpyridyl ligand has been synthesized in good yield and studied structurally and spectroscopically. The complex, [Pt(Nttpy)Cl](PF(6))(2) where Nttpy = 4'-(p-nicotinamide-N-methylphenyl)-2,2':6',2' '-terpyridine, is observed to be brightly luminescent in the solid state at room temperature and at 77 K. The complex exhibits reversible vapochromic behavior and crystallographic change in the presence of several volatile organic solvents. Upon exposure to methanol vapors, the complex changes color from red to orange, and a shift to higher energy is observed in the emission maximum with an increase in excited-state lifetime and emission intensity. The crystal and molecular structures of the orange and red forms, determined by single-crystal X-ray diffraction on the same single crystal, were found to be equivalent in the molecular sense and only modestly different in terms of packing. In both forms, the cationic Pt(II) complexes possess distorted square planar geometries. Analysis of the orange form's crystal packing reveals the presence of solvent molecules in lattice voids, Pt...Pt separations averaging 3.75 A and a zigzag arrangement between nearest neighbor Pt atoms, whereas the red form is devoid of solvent within the crystal lattice and contains complexes stacked with a nearly linear arrangement of Pt(II) ions having an average distance of 3.33 A. On the basis of the crystallographic data, it is evident that sorption of methanol vapor induces a change in intermolecular contacts and Pt...Pt interactions in going from red to orange. Disruption of the d(8)-d(8) metallophilic interactions consequently alters the emitting state from (3)[(d)sigma*-pi*(terpyridine)] that is formally a metal-metal-to-ligand charge transfer (MMLCT) state in the red form to one in which the HOMO corresponds to a more localized Pt(d) orbital in the red form ((3)MLCT).  相似文献   

15.
A small series of donor–acceptor molecular dyads has been synthesized and fully characterized. In each case, the acceptor is a dicyanovinyl unit and the donor is a boron dipyrromethene (BODIPY) dye equipped with a single styryl arm bearing a terminal amino group. In the absence of the acceptor, the BODIPY‐based dyes are strongly fluorescent in the far‐red region and the relaxed excited‐singlet states possess significant charge‐transfer character. As such, the emission maxima depend on both the solvent polarity and temperature. With the corresponding push–pull molecules, there is a low‐energy charge‐transfer state that can be observed by both absorption and emission spectroscopy. Here, charge‐recombination fluorescence is weak and decays over a few hundred picoseconds or so to recover the ground state. Overall, these results permit evaluation of the factors affecting the probability of charge‐recombination fluorescence in push–pull dyes. The photophysical studies are supported by cyclic voltammetry and DFT calculations.  相似文献   

16.
Squaraines (SQs) with tunable emission in the solid state is of great importance for various demands; however a remaining challenge is emission quenching upon aggregation. Herein, a unique SQ, named as CIEE‐SQ, is designed to exhibit strong emission in crystal, undergoing crystallization‐induced reverse from dark 1(n+σ,π*) to bright 1(π,π*) excited states. Such an excited state of CIEE‐SQ can be subtly tuned by molecular conformation changes during the unexpected temperature‐triggered single‐crystal to single‐crystal (SCSC) reversible transformation. Furthermore, co‐crystallization between CIEE‐SQ and chloroform largely stabilize the 1(π,π*) state, enhancing the transition dipole moment and decreasing the reorganization energy to boost the fluorescence, which is promising in data encryption and decryption.  相似文献   

17.
The coherent photoisomerization of a chromophore in condensed phase is a rare process in which light energy is funneled into specific molecular vibrations during electronic relaxation from the excited to the ground state. In this work, we employed ultrafast spectroscopy and computational methods to investigate the molecular origin of the coherent motion accompanying the photoisomerization of indanylidene–pyrroline (IP) molecular switches. UV/Vis femtosecond transient absorption gave evidence for an excited‐ and ground‐state vibrational wave packet, which appears as a general feature of the IP compounds investigated. In close resemblance to the coherent photoisomerization of rhodopsin, the sudden onset of a far‐red‐detuned and rapidly blue‐shifting photoproduct signature indicated that the population arriving on the electronic ground state after nonadiabatic decay through the conical intersection (CI) is still very focused in the form of a vibrational wave packet. Semiclassical trajectories were employed to investigate the reaction mechanism. Their analysis showed that coupled double‐bond twisting and ring inversions, already populated during the excited‐state reactive motion, induced periodic changes in π‐conjugation that modulate the ground‐state absorption after the non‐adiabatic decay. This prediction further supports that the observed ground‐state oscillation results from the reactive motion, which is in line with a biomimetic, coherent photoisomerization scenario. The IP compounds thus appear as a model system to investigate the mechanism of mode‐selective photomechanical energy transduction. The presented mechanism opens new perspectives for energy transduction at the molecular level, with applications to the design of efficient molecular devices.  相似文献   

18.
A V‐shaped bisanthracene derivative with three butyl groups formed two types of emissive solids that display bluish green and blue fluorescence (ΦF=72 and 32 %, respectively), depending on the preparation conditions. The crystal and powder X‐ray analyses reveal that the highly emissive solid adopts a head‐to‐head arrangement with discrete stacks of the anthracene moieties, whereas the moderately emissive solid adopts a head‐to‐tail arrangement without the stacks. The obtained molecular arrangements are transformed by thermal stimuli accompanying the change in fluorescence. Furthermore, large enhancements of dye emissions (12–45‐fold) through highly efficient host–guest energy transfer were achieved in the solid state by adding minute amounts of various fluorescent dyes (e.g. rubrene and Nile red) to the V‐shaped compound.  相似文献   

19.
A red–green–blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi‐colour emission was constructed; the blue‐emitting cationic oligofluorene nanoparticle acted as an energy‐donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red‐emitting dye embedded in the nanoparticle (interior FRET) and to a green‐emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual‐FRET system exhibits multi‐colour emission, including white, in aqueous solution and film state. A characteristic white‐emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit.  相似文献   

20.
The structures and properties of liquid‐crystalline polymers containing laterally attached p‐terphenyl and p‐pentaphenyl have been studied. In contrast to their mesogenic groups, that is, p‐terphenyl and p‐pentaphenyl, the polymers have much lower crystallinity and also lower nematic‐to‐isotropic transition temperatures. The significant depression in crystallinity can be attributed to flexible chain segments laterally attached to the oligo p‐phenylene rods, which prevent close packing of the rods and thus disrupt the crystallization. The destabilization of the liquid‐crystalline phase is due to the diluting effect of the flexible polymer backbones; that is, the concentration of the mesogenic groups is reduced. The polymer containing p‐pentaphenyl can still exhibit good solubility in common solvents and emit light at about 402 nm in the solvent tetrahydrofuran. In the solid state, the emission redshifts to 418 nm, which is fairly close to the blue‐light emission. An interdigitated packing structure of mesogenic groups has been proposed to represent the structure of the polymer in the oriented state. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3394–3402, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号