首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A large variety of twice‐deprotonated nitrogen‐rich 5,5′‐bistetrazolates, that is, the ammonium ( 1 ), hydrazinium ( 2 ), hydroxylammonium ( 3 ), guanidinium ( 4 ), aminoguanidinium ( 5 ), diaminoguanidinium ( 6 ), triaminoguanidinium ( 7 ), and diaminouronium ( 8 ) salts, have been synthesized. Energetic compounds 1 – 8 were fully characterized by single‐crystal X‐ray diffraction (except 8 ), NMR spectroscopy, IR and Raman spectroscopy, and differential scanning calorimetry (DSC) measurements. With respect to their potential use in propellant applications, the sensitivity towards impact, friction, and electrical discharge were determined. Several propulsion and detonation parameters (e.g., heat of explosion, detonation velocity) were computed by using the EXPLO5 computer code based on calculated (CBS‐4M) heats of formation and X‐ray densities. Additionally, the performance of 1 – 8 in various formulations was investigated by calculating the specific energy and specific impulse of the compounds under isochoric conditions.  相似文献   

2.
1,1′‐Dinitramino‐5,5′‐bitetrazole and 1,1′‐dinitramino‐5,5′‐azobitetrazole were synthesized for the first time. The neutral compounds are extremely sensitive and powerful explosives. Selected nitrogen‐rich salts were prepared to adjust sensitivity and performance values. The compounds were characterized by low‐temperature X‐ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and DTA/DSC. Calculated energetic performances using the EXPLO5 code based on calculated (CBS‐4M) heats of formation and X‐ray densities support the high performances of the 1,1′‐dinitramino‐5,5′‐bitetrazoles as energetic materials. The sensitivities toward impact, friction, and electrostatic discharge were also explored. Most of the compounds show sensitivities in the range of primary explosives and should only be handled with great care!  相似文献   

3.
The reaction of 2,2′‐Bis(2N‐(1,1′,3,3′‐tetramethyl‐guanidino))diphenylene‐amine (TMG2PA) ( 1 ) with CuI in MeCN results in the formation of [CuII(TMG2PAamid)I] ( 2 ) indicatingthat CuI is the target of an oxidative attack of the N‐H proton of the ligand which itself is converted to molecular hydrogen. In contrast, if [Cu(MeCN)4][PF6] is used as the CuI source, [CuI2(TMGbenz)2][PF6]2 ( 3 ) is obtained instead. The use of the non‐coordinating counterion [PF6] apparently prevents CuI from oxidation but induces itself a cyclisation reaction within the ligand which results in the formation of a benzimidazole‐guanidine ligand.  相似文献   

4.
Potassium 4,5‐bis(dinitromethyl)furoxanate was synthesized readily from cyanoacetic acid. It was characterized by IR spectroscopy, elemental analysis, NMR spectroscopy, and differential scanning calorimetry (DSC), and the structure was confirmed by X‐ray single‐crystal diffraction. Its positive oxygen balance, high density (2.130 g cm?3), sensitivity (IS=2 J, FS=5 N), and calculated heat of formation (?421.0 kJ mol?1), combined with its calculated superior detonation performance (D=7759.0 m s?1, P=27.3 GPa), make it a competitive replacement as a green primary explosive.  相似文献   

5.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

6.
5‐(Tetrazol‐1‐yl)‐2H‐tetrazole ( 1 ), or 1,5′‐bistetrazole, was synthesized by the cyclization of 5‐amino‐1H‐tetrazole, sodium azide and triethyl orthoformate in glacial acetic acid. A derivative of 1 , 2‐methyl‐5‐(tetrazol‐1‐yl)tetrazole ( 2 ) can be obtained by this method starting from 5‐amino‐2‐methyl‐tetrazole. Furthermore, selected salts of 1 with nitrogen‐rich and metal (alkali and transition metal) cations, including hydroxylammonium ( 4 ), triaminoguanidinium ( 5 ), copper(I) ( 8 ) and silver ( 9 ), as well as copper(II) complexes of both 1 and 2 were prepared. An intensive characterization of the compounds is given, including vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, DSC and single‐crystal X‐ray diffraction. Their sensitivities towards physical stimuli (impact, friction, electrostatic) were determined according to Bundesamt für Materialforschung (BAM) standard methods. Energetic performance (detonation velocity, pressure, etc.) parameters were calculated with the EXPLO5 program, based on predicted heats of formation derived from enthalpies computed at the CBS‐4M level of theory and utilizing the atomization energy method. From the analytical and calculated data, their potential as energetic materials in different applications was evaluated and discussed.  相似文献   

7.
Environmentally acceptable alternatives to toxic lead‐based primary explosives are becoming increasingly important for energetic materials. In this study, potassium 4,4′‐bis(dinitromethyl)‐3,3′‐azofurazanate, comprising two dinitromethyl groups and an azofurazan moiety, was synthesized and isolated as a new energetic 3D metal–organic framework (MOF). Several attractive properties, including a density of 2.039 g cm?3, a decomposition temperature of 229 °C, a detonation velocity of 8138 m s?1, a detonation pressure of 30.1 GPa, an impact sensitivity of 2 J, and friction sensitivity of 20 N make 4 a good candidate as a green primary explosive.  相似文献   

8.
In this contribution the synthesis and full structural as well as spectroscopic characterization of three 5‐(1,2,4‐triazol‐3‐yl)tetrazoles along with selected energetic moieties like nitro, nitrimino, and azido groups are presented. The main goal is a comparative study on the influence of those variable energetic moieties on structural and energetic properties. A complete characterization including IR and Raman as well as multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and reveal insights into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory and reveal high positive heats of formation for all compounds. The calculated detonation parameters (using the EXPLO5.05 program) are in the range of 8000 m s?1 (8097 m s?1 ( 5 ), 8020 m s?1 ( 6 ), 7874 m s?1 ( 7 )). As expected, the measured impact and friction sensitivities as well as decomposition temperatures strongly depend on the energetic moiety at the triazole ring. The C? C connection of a triazole ring with its opportunity to introduce a large variety of energetic moieties and a tetrazole ring, implying a large energy content, leads to the selective synthesis of primary and secondary explosives.  相似文献   

9.
The synthesis and full structural and spectroscopic characterization of three 5‐(1,2,4‐triazol‐C‐yl)tetrazol‐1‐ol compounds with selected energetic moieties including nitrimino ( 5 ), nitro ( 6 ) and azido ( 7 ) groups are reported. The influence of those energetic moieties as well as the C? C connection of a tetrazol‐1‐ol and a 1,2,4‐triazole on structural and energetic properties has been investigated. All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 5 – 8 were determined in the solid state by single‐crystal X‐ray diffraction. The standard heats of formation were calculated on the CBS‐4M level of theory utilizing the atomization energy method, revealing highly positive values for all compounds. The detonation parameters were calculated with the EXPLO5 program and compared to the common secondary explosive RDX. Additionally, sensitivities towards impact, friction and electrostatic discharge were determined.  相似文献   

10.
A high‐yield synthesis toward 5,5′‐bis(silyl)‐functionalized 3,3′‐dibromo‐2,2′‐dithiophenes with very efficient work‐up procedure is presented. The molecular structures of two silyl functionalized dibromo‐dithiophenes in the solid state have been determined to investigate the structural influences of different functional groups on the degree of π‐conjugation within the dithiophene moieties, as well as their packing properties. The planar alignment of the tert‐butyldimethylsilyl‐functionalized dibromo‐dithiophene shows a significantly higher degree of conjugation of the π‐system with a more favorable molecular packing than the skewed arrangement of the triisopropylsilyl‐substituted species. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
12.
A series of new energetic salts based on 4‐nitro‐3‐(5‐tetrazole)furoxan (HTNF) has been synthesized. All of the salts have been fully characterized by nuclear magnetic resonance (1H and 13C), infrared (IR) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). The crystal structures of neutral HTNF ( 3 ) and its ammonium ( 4 ) and N‐carbamoylguanidinium salts ( 9 ) have been determined by single‐crystal X‐ray diffraction analysis. The densities of 3 and its nine salts were found to range from 1.63 to 1.84 g cm?3. Impact sensitivities have been determined by hammer tests, and the results ranged from 2 J (very sensitive) to >40 J (insensitive). Theoretical performance calculations (Gaussian 03 and EXPLO 5.05) provided detonation pressures and velocities for the ionic compounds 4 – 12 in the ranges 25.5–36.2 GPa and 7934–8919 m s?1, respectively, which make them competitive energetic materials.  相似文献   

13.
In this contribution, the synthesis and full structural and spectroscopic characterization of five bis‐1,2,4‐triazoles in combination with different energetic moieties like amino, nitro, nitrimino, azido, and dinitromethylene groups is presented. The main goal is a comparative study on the influence of those energetic moieties on the structural and energetic properties. A complete characterization including IR, Raman, and multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and deliver insight into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, the detonation parameters were calculated by using the EXPLO5.05 program. Additionally, the impact as well as the friction sensitivities and the sensitivity against electrostatic discharge were determined. The potential application of the synthesized compounds as energetic material will be studied and evaluated by using the experimentally obtained values for the thermal decomposition, the sensitivity data, and the calculated performance characteristics.  相似文献   

14.
Four lanthanide coordination polymers with benzophenone‐4,4′‐dicarboxylic acid (H2bpndc) and 1,10‐phenanthroline (phen), [Ln2(bpndc)3(phen)] (Ln=La (1), Pr (2) and Tb (3)), [Yb(bpndc)15(phen)].05H2O (4) were obtained through solvothermal synthesis. The crystallographic data show that 1, 2, and 3 are isostructural, the Ln(III) ions in 1, 2 and 3 are all eight‐ and ten‐coordinated, respectively, and thus the Ln(III) ions are connected by bpndc ligands, resulting in an interpenetrating 3D structure. While in 4, the Yb(III) ions are eight‐coordinated and connected by bpndc ligands into a 3D structure with 1D rhombic channels, which result from the effect of lanthanide contraction from La(III) to Yb(III) ions, and the bpndc ligands in 1, 2, 3, and 4 display three types of coordination modes.  相似文献   

15.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

16.
Four novel nonsymmetrical photochromic diarylethene compounds containing dithieno[3,2‐b:2′,3′‐d]thiophene units were designed and synthesized to investigate their photochromic properties. All these molecules adopt a photoactive antiparallel conformation in single crystals, as revealed by X‐ray crystallographic analysis, and exhibit excellent photochromism in solution as well as in the crystalline phase.  相似文献   

17.
Lithiation of N‐(2,6‐diisopropylphenyl)‐N′‐(2‐pyridylethyl)benzamidine ( 1 ) with LiN(SiMe3)2 in a solvent mixture of toluene and TMEDA yields hexameric lithium N‐(2,6‐diisopropylphenyl)‐N′‐(2‐pyridylethyl)benzamidinate ( 2 ), which can be purified by recrystallization from a solvent mixture of toluene and THF. The three‐coordinate lithium ions have T‐shaped coordination spheres. The negative charge is delocalized within the 1,3‐diazaallylic system, which adopts a (syn‐Z)‐arrangement.  相似文献   

18.
Three conformational polymorphs of N‐(4′‐methoxyphenyl)‐3‐bromothiobenzamide, yellow α, orange β, and yellow γ, have been identified by single‐crystal X‐ray diffraction. The properties and structure of the polymorphs were examined with FT Raman, FTIR (ATR), and UV/Vis spectroscopy, as well as differential scanning calorimetry. Computational data on rotational barriers in the isolated gas‐phase molecule indicate that the molecular conformation found in the α form is energetically preferred, but only by around 2 kJ mol?1 over the γ conformation. The planar molecular structure found in the β form is destabilized by 10–14 kJ mol?1, depending on the calculation method. However, experimental evidence suggests that the β polymorph is the most stable crystalline phase at room temperature. This is attributed to the relative planarity of this structure, which allows more and stronger intermolecular interactions, that is, more energetically effective packing. Calculated electronic‐absorption maxima were in agreement with experimental spectra.  相似文献   

19.
20.
A series of highly energetic organic salts comprising a tetrazolylfuroxan anion, explosophoric azido or azo functionalities, and nitrogen-rich cations were synthesized by simple, efficient, and scalable chemical routes. These energetic materials were fully characterized by IR and multinuclear NMR (1H, 13C, 14N, 15N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt consisting of an azidotetrazolylfuroxan anion and a 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit good experimental densities (1.57–1.71 g cm−3), very high enthalpies of formation (818–1363 kJ mol−1), and, as a result, excellent detonation performance (detonation velocities 7.54–8.26 kms−1 and detonation pressures 23.4–29.3 GPa). Most of the synthesized energetic salts have moderate sensitivity toward impact and friction, which makes them promising candidates for a variety of energetic applications. At the same time, three compounds have impact sensitivity on the primary explosives level (1.5–2.7 J). These results along with high detonation parameters and high nitrogen contents (66.0–70.2 %) indicate that these three compounds may serve as potential environmentally friendly alternatives to lead-based primary explosives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号