共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Karoline Tuber Annett Zimathies Jiayin Yuan 《Macromolecular rapid communications》2015,36(24):2176-2180
Porous polymer membranes made via electrostatic complexation are fabricated from a water‐soluble poly(ionic liquid) (PIL) for the first time. The porous structure is formed as a consequence of simultaneous phase separation of the PIL and ionic complexation with an acid, which occurred in a basic solution of a nonsolvent for the PIL. These membranes have a stimuli‐responsive porosity, with open and closed pores in isopropanol and in water, respectively. This property is quantitatively demonstrated in filtration experiments, where water is passing much slower through the membranes than isopropanol.
3.
Xiaofeng Sui Lennard van Ingen Mark A. Hempenius G. Julius Vancso 《Macromolecular rapid communications》2010,31(23):2059-2063
The synthesis of a rapidly forming redox responsive poly(ferrocenylsilane)‐poly(ethylene glycol) (PFS‐PEG)‐based hydrogel is described, achieved by a thiol‐Michael addition click reaction. PFS bearing acrylate side groups (PFS‐acryl) was synthesized by side group modification of poly(ferrocenyl(3‐iodopropyl)methylsilane) (PFS‐I) and characterized by 1H NMR, 13C NMR, and FT‐IR spectroscopy. The equilibrium swelling ratio, morphology, rheology, and redox responsive properties of the PFS‐PEG‐based hydrogel are reported.
4.
《Macromolecular bioscience》2017,17(4)
Stimuli‐responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)‐polycaprolactone copolymer blocks to form triple‐sensitive cleavable polymeric nanocarrier (tri‐PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri‐PESC NPs keep intact during blood circulation due to the limited cleaving of triple‐disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin‐loaded tri‐PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri‐PESC NPs with triple‐sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.
5.
Meta M. Bloksma Renzo M. Paulus Huub P. C. van Kuringen Friso van der Woerdt Hanneke M. L. Lambermont‐Thijs Ulrich S. Schubert Richard Hoogenboom 《Macromolecular rapid communications》2012,33(1):92-96
The monomers 2‐methyl‐2‐oxazine (MeOZI), 2‐ethyl‐2‐oxazine (EtOZI), and 2‐n‐propyl‐2‐oxazine (nPropOZI) were synthesized and polymerized via the living cationic ring‐opening polymerization (CROP) under microwave‐assisted conditions. pEtOZI and pnPropOZI were found to be thermoresponsive, exhibiting LCST behavior in water and their cloud point temperatures (TCP) are lower than for poly(2‐oxazoline)s with similar side chains. However, comparison of poly(2‐oxazine) and poly(2‐oxazoline)s isomers reveals that poly(2‐oxazine)s are more water soluble, indicating that the side chain has a stronger impact on polymer solubility than the main chain. In conclusion, variations of both the side chains and the main chains of the poly(cyclic imino ether)s resulted in a series of distinct homopolymers with tunable TCP. 相似文献
6.
《Macromolecular rapid communications》2017,38(19)
The functionalization with phosphotriesterase of poly(isoprene‐b‐styrene‐b‐4‐vinylpyridine)‐based nanoporous membranes fabricated by self‐assembly and nonsolvent induced phase separation (SNIPS) is shown to enable dynamically responsive membranes capable of substrate‐specific and localized gating response. Integration of the SNIPS process with macroporous nylon support layers yields mechanically robust textile‐type films with high moisture vapor transport rates that display rapid and local order‐of‐magnitude modulation of permeability. The simplicity of the fabrication process that is compatible with large‐area fabrication along with the versatility and efficacy of enzyme reactivity offers intriguing opportunities for engineered biomimetic materials that are tailored to respond to a complex range of external parameters, providing sensing, protection, and remediation capabilities. 相似文献
7.
8.
Shan Zou Mark A. Hempenius Holger Schnherr G. Julius Vancso 《Macromolecular rapid communications》2006,27(2):103-108
Summary: Progress in the development of a redox‐driven macromolecular motor and the characterization of its redox‐mechanical cycle using electrochemical AFM‐based single‐molecule force spectroscopy (SMFS) is described. The elasticities of individual neutral and oxidized poly(ferrocenyldimethylsilane) (PFS) macromolecules were reversibly controlled in situ by adjusting the potential in electrochemical SMFS experiments. For the operating cycle of one individual PFS‐based molecular motor, an output of 3.4 × 10−19 J and an efficiency of 5% have been estimated.
9.
Benjámin Gyarmati Balázs Vajna Árpád Némethy Krisztina László András Szilágyi 《Macromolecular bioscience》2013,13(5):633-640
Synthesis and characterization of a pH‐ and redox‐sensitive hydrogel of poly(aspartic acid) are reported. Reversible gelation and dissolution are achieved both in dimethylformamide and in aqueous medium via a thiol‐disulphide interconversion in the side chain of the polymers. Structural changes are confirmed by Raman microscopy and rheological measurements. Injectable aqueous solutions of thiolated poly(aspartic acid) can be converted into mechanically stable gels by oxidation, which can be useful for drug encapsulation and targeted delivery. Reduction‐facilitated release of an entrapped drug from disulphide cross‐linked hydrogels is studied.
10.
Xue-Jie Wang Li Wang Jian-Jun Wang 《Journal of Polymer Science.Polymer Physics》2004,42(12):2245-2253
The electrochemical behavior of high-molecular-weight poly(ferrocenyldimethylsilane) films and poly(ferrocenylmethylphenylsilane) films, which contained about 2.8 × 10−6 mol cm−2 ferrocene sites in eight kinds of aqueous electrolyte solutions, was investigated with cyclic voltammetry (CV). In some aqueous electrolyte solutions, the CV peak currents diminished gradually with an increase in the scanning times, whereas in other aqueous electrolyte solutions, stable and repeated cyclic voltammograms were obtained. The polymer films were poor-solvent-swollen in aqueous electrolyte solutions, and this resulted in a high resistivity of mass transfer and a slow rate of electrode reaction; therefore; quasireversible or irreversible CV processes were obtained. The kinetic parameters of the film-electrode processes, such as the surface transfer coefficient, the apparent diffusion coefficient, and the standard rate constant for electron transfer, for the two films in aqueous LiClO4 solutions were measured, and the electrode process mechanism of the films was examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2245–2253, 2004 相似文献
11.
Poly (N‐isopropylacrylamide) (pNIPAm)‐based hydrogels and hydrogel particles (microgels) have been extensively studied since their discovery and “popularization” a few decades ago. While their uses seem to have no bounds, this Feature Article is focused on their development and application for sensing small molecules, macromolecules, and biomolecules. Hydrogel/microgel‐based photonic materials with order in one, two, or three dimensions are highlighted, which exhibit optical properties that depend on the presence and concentration of various analytes.
12.
Arvind Kumar Michael A. Invernale Sung‐Yeon Jang Gregory A. Sotzing 《Journal of polymer science. Part A, Polymer chemistry》2010,48(4):756-763
Herein, we report the synthesis of conducting poly (terthiophene)s using a side chain precursor polymer approach. Random copolymers were prepared by ring opening metathesis polymerization of two norbornylene monomers, one containing a pendant terthiophene group and the other containing a pendant acetate group. Solid‐state oxidative conversion of the terthiophene units was used to produce conductive polymers. Oxidative solid‐state conversion was successful for copolymers containing as little as 1 mol % of terthiophene comonomer. The electrical and optical properties of CPs were studied as a function of the amount of electroactive moiety, terthiophene (3T), present in the copolymer. The CPs were found to have conductivity varying between 10?1 and 10?4 S/cm depending on the precursor copolymer compositions. The CPs obtained from all precursors had no significant difference in their energy gaps and showed blue to orange color transitions when switching from the oxidized to the neutral states, respectively. The absorbance intensity at 426 nm for poly(3T) from the precursors fits the Beer–Lambert law corresponding to the range of initial 3T content in the precursor copolymer composition (from 1 to 100 mol %). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 756–763, 2010 相似文献
13.
Jodie N. Haigh Ya‐mi Chuang Brooke Farrugia Richard Hoogenboom Paul D. Dalton Tim R. Dargaville 《Macromolecular rapid communications》2016,37(1):93-99
A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using microfiber porogens is presented. Melt electrospinning writing of poly(ε‐caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2‐oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well‐defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g., nutrients, growth factors or therapeutics.
14.
Ian Milligan Liye Fu Emily A. Franckowiak Prof. Wenjun Du 《Angewandte Chemie (International ed. in English)》2013,52(51):13699-13702
pH‐Responsive polymers have great potential in biomedical applications, including the selective delivery of preloaded drugs to tissues with low pH values. These polymers usually contain acid‐labile linkages such as esters and acetals/ketals. However, these linkages are only mildly pH‐responsive with relatively long half‐lives (t1/2). Orthoester linkages are more acid‐labile, but current methods suffer from synthetic challenges and are limited to the availability of monomers. To address these limitations, a sugar poly(orthoester) was synthesized as a highly pH‐responsive polymer. The synthesis was achieved by using 2,3,4‐tri‐O‐acetyl‐α‐D ‐glucopyranosyl bromide as a difunctional AB monomer and tetra‐n‐butylammonium iodide (TBAI) as an effective promoter. Under optimal conditions, polymers with molecular weights of 6.9 kDa were synthesized in a polycondensation manner. The synthesized glucose poly(orthoester), wherein all sugar units were connected through orthoester linkages, was highly pH‐responsive with a half‐life of 0.9, 0.6, and 0.2 hours at pH 6, 5, and 4, respectively. 相似文献
15.
Rapid,On‐Command Debonding of Stimuli‐Responsive Cross‐Linked Adhesives by Continuous,Sequential Quinone Methide Elimination Reactions 下载免费PDF全文
Hyungwoo Kim Hemakesh Mohapatra Scott T. Phillips 《Angewandte Chemie (International ed. in English)》2015,54(44):13063-13067
Adhesives that selectively debond from a surface by stimuli‐induced head‐to‐tail continuous depolymerization of poly(benzyl ether) macro‐cross‐linkers within a poly(norbornene) matrix are described. Continuous head‐to‐tail depolymerization provides faster rates of response than can be achieved using a small‐molecule cross‐linker, as well as responses to lower stimulus concentrations. Shear‐stress values for glass held together by the adhesive reach 0.51±0.10 MPa, whereas signal‐induced depolymerization via quinone methide intermediates reduces the shear stress values to 0.05±0.02 MPa. Changing the length of the macro‐cross‐linkers alters the time required for debonding, and thus enables the programmed sequential release of specific layers in a glass composite material. 相似文献
16.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.
17.
Weipeng Lv Shuoqi Liu Wenqian Feng Junjie Qi Guoliang Zhang Fengbao Zhang Xiaobin Fan 《Macromolecular rapid communications》2011,32(14):1101-1107
Poly(N‐isopropylacrylamide) (PNIPAAm) grafted dextran nanogels with dodecyl and thiol end groups have been synthesized by RAFT process. Dodecyl‐terminated polymers (DexPNI) can be readily dissolved in water and further self assemble into ordered stable nanostructures through direct noncovalent interactions at room temperature. SEM, AFM and DLS measurements confirm the formation of spherical nanogels at hundred‐nanometer scales. The elevation of environment temperature will indirectly result in the formation of collapsed nanostructures due to the LCST phase transition of PNIPAAm side chains. Turbidimetry results show that the phase transition behaviors of DexPNI are greatly dependent on PNIPAAm chain length and polymer concentration: increasing PNIPAAm chain length and polymer concentration both lead to lower LCSTs and sharper phase transitions. Moreover, the dodecyl‐terminated polymers can transform into thiol‐terminated versions by aminolysis of trithiocarbonate groups, and further into chemical (disulfide) cross‐linked versions (SS‐DexPNI) by oxidation. SS‐DexPNI nanogels have “doubled” chain length of PNIPAAm, and hence sharper phase transitions. In situ DLS measurements of the evolution of hydrodynamic radius attest that the self assembly of SS‐DexPNI nanogels can be selectively directed by the change in either external temperature or redox potential. These nanogels thus are promising candidates for triggered intracellular delivery of encapsulated cargo. We can also expect that the polymer can be noncovalently (by dodecyl end groups) or covalently (by thiol end groups) coated on a series of nanomaterials (e.g., carbon nanotubes, graphene, gold nanomaterials) to build a variety of novel smart, and robust nanomaterials.
18.
Lei Xiao Xing Chen Jingjing Xu Kangcheng Chen Jianhua Fang 《Journal of polymer science. Part A, Polymer chemistry》2019,57(23):2304-2313
A series of novel side‐chain sulfonated poly(arylene ether sulfone) (SPAES) multiblock and random copolymers were synthesized by condensation polymerization from a new disulfonated aryl sulfone monomer, 4,4′‐difluoro‐2,2′‐bis(3‐sulfobenzoyl)diphenyl sulfone disodium salt (DFBSPS). The chemical structures of DFBSPS and the SPAESs were characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectra. The SPAES membranes prepared by solution cast method exhibited high tensile strength (50–71 MPa) and high radical oxidative stability. They could keep their morphology and maintain proton conductivities after hydrolysis test in 95 °C water for 1000 h. They also showed smaller swelling ratio in in‐plane direction than in through‐plane direction and such an anisotropic effect was more significant for the multiblock copolymers than for the random ones. The multiblock copolymer membranes exhibited higher proton conductivity than the random ones with similar ion exchange capacities (IECs). Preliminary hydrogen‐oxygen fuel cell tests were performed at 60 °C and 80% relative humidity (RH). The results showed that the single cell equipped with the multibiock copolymer membrane SB3 exhibited 0.12 W cm?2 higher maximum output power density than the one equipped with the random copolymer membrane SR3 (with the same IEC), indicating much better performance of the former. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2304–2313 相似文献
19.
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N‐isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium‐based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli‐responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP‐g‐PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP‐g‐PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.
20.
Gohy JF Lohmeijer BG Alexeev A Wang XS Manners I Winnik MA Schubert US 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(17):4315-4323
A supramolecular AB diblock copolymer has been prepared by the sequential self-assembly of terpyridine end-functionalized polymer blocks by using Ru(III)/Ru(II) chemistry. By this synthetic strategy a hydrophobic poly(ferrocenylsilane) (PFS) was attached to a hydrophilic poly(ethylene oxide) (PEO) block to give an amphiphilic metallo-supramolecular diblock copolymer (PEO/PFS block ratio 6:1). This compound was used to form micelles in water that were characterized by a combination of dynamic and static light scattering, transmission electron microscopy, and atomic force microscopy. These complementary techniques showed that the copolymers investigated form rod-like micelles in water; the micelles have a constant diameter but are rather polydisperse in length, and light scattering measurements indicate that they are flexible. Crystallization of the PFS in these micelles was observed by differential scanning calorimetry, and is thought to be the key behind the formation of rod-like structures. The cylindrical micelles can be cleaved into smaller rods whenever the temperature of the solution is increased or they are exposed to ultrasound. 相似文献