首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excellent yields were obtained from the silver nitrate‐catalyzed homocoupling reaction of alkynes in N,N‐dimethylformamide using triphenylphosphine as ligand. This safe and simple silver catalytic system has been employed in a safe and efficient protocol for the synthesis of various 1,3‐diyne products from the corresponding aromatic or aliphatic alkynes with good air stability and absence of side products. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The synthesis and coordination chemistry of a saturated analogue of a “bulky‐yet‐flexible” N‐heterocyclic carbene (NHC) ligand are described. “SIPaul” is a 4,5‐dihydroimidazol‐2‐ylidene ligand with unsymmetrical aryl N‐substituents, and is one of the growing class of “bulky‐yet‐flexible” NHCs that are sufficiently bulky to stabilize catalytic intermediates, but sufficiently flexible that they do not inhibit productive chemistry at the central metal atom. Here, the synthesis of SIPaul.HCl and its complexes with copper, silver, iridium, palladium, and nickel, and its selenourea, are reported. The steric impact of the ligand is quantified using percent buried volume (% Vbur), whereas the electronic properties are probed and quantified using the Tolman Electronic Parameter (TEP) and δSe of the corresponding selenourea. This work shows that despite the often very different performance of saturated versus unsaturated carbenes in catalysis, the effect of backbone saturation on measurable properties is very small.  相似文献   

3.
A convenient method for the synthesis of highly substituted isoquinolines and isoquinolinium salts by the nickel‐catalyzed cyclization of ortho‐haloketoximes and ‐ketimines, respectively, with alkynes is described. The reaction of ortho‐haloketoximes and various alkynes in the presence of [Ni(PPh3)2Br2] and zinc powder in a mixture of acetonitrile and tetrahydrofuran at 80 °C for 15 hours gave 1,3,4‐trisubstituted isoquinoline products in moderate to excellent yields and high regioselectivity. The corresponding isoquinoline N‐oxide was found to be the intermediate in the cyclization reaction pathway. In contrast, the reaction of ortho‐haloketimines and alkynes under similar catalytic conditions in tetrahydrofuran at 70 °C for two hours gave 1,2,3,4‐tetrasubstituted isoquinolinium salts in good to excellent yields.  相似文献   

4.
Bisindoles (BIMs) were modulated as powerful N,N′ donor ligands for the copper‐catalyzed Sonogashira reaction. Ligand screening experiments on 11 BIM compounds found that 3,3′‐(4‐chlorophenyl)methylenebis(1‐methyl‐1H‐indole) (10%) efficiently accelerated CuCl (5%)‐catalyzed cross‐coupling of aryl iodides with terminal alkynes. A wide range of substituted aryl iodides and/or alkyl‐ and aryl‐substituted terminal alkynes were examined, leading to the corresponding coupling products with yields up to 99%. An efficient and scalable protocol for the synthesis of BIM ligands on a gram scale, with extremely low catalyst loading of o‐ClC6H4NH3+Cl?, was also developed with a reaction time of 20 min with yields up to 93%. This novel N,N′ ligand was air‐stable, easily available and highly modulated with low copper loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Despite there being a straightforward approach for the synthesis of 1,2‐dihydropyridines, the transition‐metal‐catalyzed [2+2+2] cycloaddition reaction of imines with alkynes has been achieved only with imines containing an N‐sulfonyl or ‐pyridyl group. Considering the importance of 1,2‐dihydropyridines as useful intermediates in the preparation of a wide range of valuable organic molecules, it would be very worthwhile to provide novel strategies to expand the scope of imines. Herein we report a successful expansion of the scope of imines in nickel‐catalyzed [2+2+2] cycloaddition reactions with alkynes. In the presence of a nickel(0)/PCy3 catalyst, a reaction with N‐benzylidene‐P,P‐diphenylphosphinic amide was developed. Moreover, an application of N‐aryl imines to the reaction was also achieved by adopting N‐heterocyclic carbene ligands. The isolation of an (η2N‐aryl imine)nickel(0) complex containing a 14‐electron nickel(0) center and a T‐shaped 14‐electron five‐membered aza‐nickelacycle is shown. These would be considered as key intermediates of the reaction. The structure of these complexes was unambiguously determined by NMR spectroscopy and X‐ray analyses.  相似文献   

6.
A series of new N‐aryl‐α,β‐disubstituted amides (gem or E1; trans or E2) were synthesized in good yields by carbonylative addition of aniline derivatives 1a–f to aromatic alkynes 2a,b catalyzed by Pd(OAc)2 and 1,3‐bis(diphenylphosphino)propane. The catalytic synthesis of tertiary α,β‐unsaturated amides was also successfully achieved. Traces of products were observed in the absence of p‐toluenesulfonic acid used as an additive. The reaction is sensitive to the type of phosphine ligand and solvent. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The P,O‐chelated shell higher olefin process (SHOP) type nickel complexes are practical homogeneous catalysts for the industrial preparation of linear low‐carbon α‐olefins from ethylene. We describes that a facile synthetic route enables the modulation of steric hindrance and electronic nature of SHOP‐type nickel complexes. A series of sterically bulky SHOP‐type nickel complexes with variable electronic nature, {[4‐R‐C6H4C(O) = C‐PArPh]NiPh (PPh3); Ar = 2‐[2′,6′‐(OMe)2C6H3]C6H4; R = H ( Ni1 ); R = OMe ( Ni2 ); R = CF3 ( Ni3 )}, were prepared and used as single component catalysts toward ethylene polymerization without using any phosphine scavenger. These nickel catalysts exhibit high thermal stability during ethylene polymerization and result in highly crystalline linear α‐olefinic solid polymer. The catalytic performance of the SHOP‐type nickel complexes was significantly improved by introducing a bulky ortho‐biphenyl group on the phosphorous atom or an electron‐withdrawing trifluoromethyl on the backbone of the ligand, indicating steric and electronic effects play critical roles in SHOP‐type nickel complexes catalyzed ethylene polymerization.  相似文献   

8.
Selective hydrogenation of nitriles and alkynes is crucial considering the vast applications of reduced products in industries and in the synthesis of bioactive compounds. Particularly, the late 3d transition metal catalysts (manganese, iron, cobalt, nickel and copper) have shown promising activity for the hydrogenation of nitriles to primary amines, secondary amines and imines. Similarly, semihydrogenation of alkynes to E‐ and Z‐alkenes by 3d metals is adequately successful both via the transfer hydrogenation and by using molecular hydrogen. The emergence of 3d transition metals in the selective synthesis of industrially relevant amines, imines and alkenes makes this protocol more attractive. Herein, we provide a concise overview on the late 3d transition metal‐catalyzed hydrogenation of nitriles to amines and imines as well as semihydrogenation of alkynes to alkenes.  相似文献   

9.
An efficient palladium‐catalyzed regioselective 5‐exo aminotrifluoromethoxylation of alkenes has been established herein, which provides a practical route towards the synthesis of OCF3‐containing pyrrolidines. tert‐Butyloxycarbonyl (Boc) as an amino protecting group plays a significant role in both the chemo‐ and regioselectivities. In addition, preliminary mechanistic studies reveal that the amino protecting group of substrates and the counter anion of palladium catalyst play critical roles in reaction efficiency presumably due to an isomerization of alkyl‐ Pd(II) intermediates. Moreover, the asymmetric 5‐exo aminotrifluoromethoxylation reaction has also been achieved by introducing a sterically bulky pyridinyl‐oxazoline ligand.  相似文献   

10.
A series of α‐keto‐β‐diimine nickel complexes (Ar‐N = C(CH3)‐C(O)‐C(CH3)=N‐Ar)NiBr2; Ar = 2,6‐R‐C6H3‐, R = Me, Et, iPr, and Ar = 2,4,6‐Me3‐C6H3‐) was prepared. All corresponding ligands are unstable even under an inert atmosphere and in a freezer. Stable copper complex intermediates of ligand synthesis and ethyl substituted nickel complex were isolated and characterized by X‐ray. All nickel complexes were used for the polymerization of ethene, propylene, and hex‐1‐ene to investigate their livingness and the extent of chain‐walking. Low‐temperature propene polymerization with less bulky ortho‐substituents was less isospecific than the one with isopropyl derivative. Propene stereoblock copolymers were prepared by iPr derivative combining the polymerization at low temperature to prepare isotactic polypropylene (PP) block and at a higher temperature, supporting chain‐walking, to obtain amorphous regioirregular PP block. Alternatively, a copolymerization of propene with ethene was used for the preparation of amorphous block. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2440–2449  相似文献   

11.
Cyclopentadienyl–ruthenium half‐sandwich complexes with η2‐bound alkyne ligands have been suggested as catalytic intermediates in the early stages of Ru‐catalyzed reactions with alkynes. We show that electronically unsaturated complexes of the formula [RuCl(Cp^)(η2‐RC≡CR′)] can be stabilized and crystallized by using the sterically demanding cyclopentadienyl ligand Cp^ (Cp^=η5‐1‐methoxy‐2,4‐tert‐butyl‐3‐neopentyl‐cyclopentadienyl). Furthermore we demonstrate that [RuCl2(Cp^)]2 is an active and regioselective catalyst for the [2+2+2] cyclotrimerization of alkynes. The first elementary steps of the reaction of mono(η2‐alkyne) complexes containing {RuCl(Cp*)} (Cp*=η5‐C5Me5) and {RuCl(Cp^)} fragments with alkynes were investigated by DFT calculations at the M06/6‐31G* level in combination with a continuum solvent model. Theoretical results are able to rationalize and complement the experimental findings. The presence of the sterically demanding Cp^ ligand increases the activation energy required for the formation of the corresponding di(η2‐alkyne) complexes, enhancing the initial regioselectivity, but avoiding the evolution of the system towards the expected cyclotrimerization product when bulky substituents are present. Theoretical results also show that the electronic structure and stability of a metallacyclic intermediate is strongly dependent on the nature of the substituents present in the alkyne.  相似文献   

12.
The 1,6‐annulated 2‐pyridone motif is found in many biologically active compounds and its close relation to the indolizidine and quinolizidine alkaloid core makes it an attractive building block. A nickel‐catalyzed C? H functionalization of 2‐pyridones and subsequent cyclization affords 1,6‐annulated 2‐pyridones by selective intramolecular olefin hydroarylation. The switch between the exo‐ and endo‐cyclization modes is controlled by two complementary sets of ligands. Irrespective of the ring size, the regioselectivity during the cyclization is under full catalyst control. Simple cyclooctadiene promotes an exo‐selective cyclization, whereas a bulky N‐heterocyclic carbene ligand results in an endo‐selective mode. The method was further applied in the synthesis of the lupin alkaloid cytisine.  相似文献   

13.
A convenient, efficient, and generally applicable method was developed for the synthesis of terminal alkynes from anti‐3‐aryl‐2,3‐dibromopropanoic acids in the presence of DMSO and K2CO3.  相似文献   

14.
A Co(acac)2/POL‐Xantphos@10PPh3‐catalyzed hydrosilylation of unsymmetrical internal alkynes with Ph2SiH2 has been developed for the synthesis of highly selective syn‐α‐vinylsilane products. Furthermore, terminal alkynes were also used and gave the products with excellent regioselectivity and a wide functional group tolerance. Because this porous organic polymer combines the selectivity and activity merits of Xantphos with the stability advantage derived from the high concentration of PPh3, the Co(acac)2/POL‐Xantphos@10PPh3 can be recycled multiple times without loss of activity and selectivity. This heterogeneous catalyst is expected to find promising applications in industrial synthesis.  相似文献   

15.
A series of η5‐cyclopentadienylruthenium complexes, [(η5‐C5MenH5?n)RuCl(cod)] (cod=1,5‐cyclooctadiene), are evaluated as catalysts for the cycloaddition of 1,6‐diynes with alkynes. As a result, we unexpectedly found that the complex bearing the 1,2,4‐Me3Cp ligand is the most efficient catalyst in terms of turnover number (TON) for the cycloaddition of a bulky diiododiyne with acetylene, recording the highest TON of 970 with a catalyst loading of 0.1 mol %. To obtain insight into this result, we evaluate the electron richness of all complexes by cyclic voltammetric analyses, which indicate that the electron density of the ruthenium center increases with an increase in methyl substitution on the Cp′ ligands. The initial rate (up to 10 % conversion) of the cycloaddition was then measured using 1H NMR spectroscopy. The initial rate is found to decrease as the number of methyl substituents increases. According to these results, we assumed that the optimum catalytic performance exhibited by the 1,2,4‐trimethylcyclopentadienyl complex can be attributed to its robustness under the catalytic cycloaddition conditions. The steric and electronic effects of the Cp′ ligands are also investigated in terms of the regioselectivity of the cycloaddition of an unsymmetrical diyne and in terms of the chemoselectivity in the cycloaddition of a 1,6‐heptadiyne with norbornene.  相似文献   

16.
We make the case for benzo[c]quinolin‐6‐ylidene ( 1 ) as a strongly electron‐donating carbene ligand. The facile synthesis of 6‐trifluoromethanesulfonylbenzo[c]quinolizinium trifluoromethanesulfonate ( 2 ) gives straightforward access to a useful precursor for oxidative addition to low‐valent metals, to yield the desired carbene complexes. This concept has been achieved in the case of [Mn(benzo[c]quinolin‐6‐ylidene)(CO)5]+ ( 15 ) and [Pd(benzo[c]quinolin‐6‐ylidene)(PPh3)2(L)]2+ L=THF ( 21 ), OTf ( 22 ) or pyridine ( 23 ). Attempts to coordinate to nickel result in coupling products from two carbene precursor fragments. The CO IR‐stretching‐frequency data for the manganese compound suggests benzo[c]quinolin‐6‐ylidene is at least as strong a donor as any heteroatom‐stabilised carbene ligand reported.  相似文献   

17.
A copper-catalyzed dearomative alkynylation of pyridines is reported with excellent regio- and enantioselectivities. The synthetically valuable enantioenriched 2-alkynyl-1,2-dihydropyridine products afforded are generated from the readily available feedstock, pyridine, and commercially available terminal alkynes. The three-component reaction between a pyridine, a terminal alkyne, and methyl chloroformate employs copper chloride and StackPhos, a chiral biaryl P,N- ligand, as the catalytic system. Under mild reaction conditions, the desired 1,2-addition products are delivered in up to 99 % yield with regioselectivity ratios up to 25 : 1 and enantioselectivities values of up to 99 % ee. Activated and non-activated terminal alkynes containing a wide range of functional groups are well tolerated. Even acetylene gas delivered mono-alkynylated products in high yield and ee. Application of the methodology in an efficient enantioselective synthesis of the chiral piperidine indolizidine, coniceine, is reported.  相似文献   

18.
The addition reaction of alkynes to N‐heterocycles by simply heating in DMSO with potassium phosphate is reported. Good yields with high stereoselectivity could be achieved for a range of substrates. The scope is quite general for both amines and phenylacetylenes. In addition, internal alkynes and α‐bromostyrene were also examined in this reaction. This process is efficient and useful for the synthesis of (Z)‐N‐(1‐alkenyl)imidazoles and related Z products. Thus, the reaction is useful because of the importance of the imidazole scaffold.  相似文献   

19.
The development of versatile catalyst systems and new transformations for the utilization of carbon dioxide (CO2) is of great interest and significance. This Personal Account reviews our studies on the exploration of the reactions of CO2 with various substrates by the use of N‐heterocyclic carbene (NHC)‐copper catalysts. The carboxylation of organoboron compounds gave access to a wide range of carboxylic acids with excellent functional group tolerance. The C?H bond carboxylation with CO2 emerged as a straightforward protocol for the preparation of a series of aromatic carboxylic esters and butenoates from simple substrates. The hydrosilylation of CO2 with hydrosilanes provided an efficient method for the synthesis of silyl formate on gram scale. The hydrogenative or alkylative carboxylation of alkynes, ynamides and allenamides yielded useful α,β‐unsaturated carboxylic acids and α,β‐dehydro amino acid esters. The boracarboxylation of alkynes or aldehydes afforded the novel lithium cyclic boralactone or boracarbonate products, respectively. The NHC‐copper catalysts generally featured excellent functional group compatibility, broad substrate scope, high efficiency, and high regio‐ and stereoselectivity. The unique electronic and steric properties of the NHC‐copper units also enabled the isolation and structural characterization of some key intermediates for better understanding of the catalytic reaction mechanisms.  相似文献   

20.
A series of novel α‐diamine nickel complexes, (ArNH‐C(Me)‐(Me)C‐NHAr)NiBr2, 1 : Ar=2,6‐diisopropylphenyl, 2 : Ar=2,6‐dimethylphenyl, 3 : Ar=phenyl), have been synthesized and characterized. X‐ray crystallographic analysis showed that the coordination geometry of the α‐diamine nickel complexes is markedly different from conventional α‐diimine nickel complexes, and that the chelate ring (N‐C‐C‐N‐Ni) of the α‐diamine nickel complex is significantly distorted. The α‐diamine nickel catalysts also display different steric effects on ethylene polymerization in comparison to the α‐diimine nickel catalyst. Increasing the steric hindrance of the α‐diamine ligand by substitution of the o‐methyl groups with o‐isopropyl groups leads to decreased polymerization activity and molecular weight; however, catalyst thermal stability is significantly enhanced. Living polymerizations of ethylene can be successfully achieved using 1 /Et2AlCl at 35 °C or 2 /Et2AlCl at 0 °C. The bulky α‐diamine nickel catalyst 1 with isopropyl substituents can additionally be used to control the branching topology of the obtained polyethylene at the same level of branching density by tuning the reaction temperature and ethylene pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号