首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All pharmaceutical products contain organic molecules; the source may be a natural product or a fully synthetic molecule, or a combination of both. Thus, it follows that organic chemistry underpins both existing and upcoming pharmaceutical products. The reverse relationship has also affected organic synthesis, changing its landscape towards increasingly complex targets. This Review article sets out to give a concise appraisal of this symbiotic relationship between organic chemistry and drug discovery, along with a discussion of the design concepts and highlighting key milestones along the journey. In particular, criteria for a high-quality compound library design enabling efficient virtual navigation of chemical space, as well as rise and fall of concepts for its synthetic exploration (such as combinatorial chemistry; diversity-, biology-, lead-, or fragment-oriented syntheses; and DNA-encoded libraries) are critically surveyed.  相似文献   

2.
In order to evaluate to what extent will genomics and in silico related technologies improve overall drug discovery process, we analyzed three studies comping cost, time and attrition rate at each step of the drug discovery process, between standard pharmaceutical and genomics based approaches.  相似文献   

3.
4.
陈依军  吴旭日 《化学进展》2007,19(12):1947-1954
生物催化具有条件温和、效率高、选择性强、副产物少等特点,因此生物催化在新药的研究和开发中得到广泛的应用;此外,利用生物技术对生物催化剂进行改造优化,将使其能够更好地应用于新颖的生产工艺。本文对此领域的进展作一简单介绍和概述。  相似文献   

5.
The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure–activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.  相似文献   

6.
Proteomics is a research field aiming to characterize molecular and cellular dynamics in protein expression and function on a global level. The introduction of proteomics has been greatly broadening our view and accelerating our path in various medical researches. The most significant advantage of proteomics is its ability to examine a whole proteome or sub-proteome in a single experiment so that the protein alterations corresponding to a pathological or biochemical condition at a given time c…  相似文献   

7.
With a number of antibody–drug conjugates (ADCs) approved for clinical use as targeted cancer therapies and numerous candidates in clinical trials, the field of ADCs is emerging as one of the frontiers in biomedical research, particularly in the area of cancer treatment. Chemists, biologists and clinicians, among other scientists, are partnering their expertise to improve their design, synthesis, efficacy and precision as they strive to advance this paradigm of personalized and targeted medicine to treat cancer patients more effectively and to expand its scope to other indications. Just as Alexander Fleming's penicillin, and the myriad other bioactive natural products that followed its discovery and success in the clinic, ignited a revolution in medicine after the Second World War, so did calicheamicin γ1I, and other highly potent naturally occurring antitumor agents, play a pivotal role in enabling the advent of this new paradigm of “biological‐small molecule hybrid” medical intervention. Today there are four clinically approved drugs from the ADC paradigm, Mylotarg, Adcetris, Kadcyla and Besponsa, in order of approval, the first and the last of which carry the same calicheamicin γ1I‐derived payload. Covering oncological applications, and after a brief history of the emergence of the field of antibody–drug conjugates triggered more than a century ago by Paul Ehrlich's “magic bullet” concept, this Review is primarily focusing on the chemical synthesis aspects of the ADCs multidisciplinary research enterprise.  相似文献   

8.
传统多肽所具有的容易被酶解、细胞膜通透性差以及构象容易发生变化等缺点,限制了它作为药物在疾病治疗领域的应用。将脱氢氨基酸引入多肽,对其进行构象限制,能够有效改善它的代谢稳定性和生物利用度。本文主要综述了α,β-脱氢-α-氨基酸、β,γ-脱氢-α-氨基酸、α-脱氢-β-氨基酸、α,β-脱氢-β-氨基酸四种脱氢氨基酸的合成方法以及近几年来在药物设计中的应用,希望为相关的研究提供参考。  相似文献   

9.
The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.  相似文献   

10.
11.
To study the behavior of MDM2‐p53 inhibitors in a disease‐relevant cellular model, we have developed and validated a set of bioorthogonal probes that can be fluorescently labeled in cells and used in high‐content screening assays. By using automated image analysis with single‐cell resolution, we could visualize the intracellular target binding of compounds by co‐localization and quantify target upregulation upon MDM2‐p53 inhibition in an osteosarcoma model. Additionally, we developed a high‐throughput assay to quantify target occupancy of non‐tagged MDM2‐p53 inhibitors by competition and to identify novel chemical matter. This approach could be expanded to other targets for lead discovery applications.  相似文献   

12.
13.
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next‐generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge‐based approach is essential for fighting the inevitable occurrence of drug resistance.  相似文献   

14.
Controlled release of an anticancer drug, doxorubicin (dox), from metal–organic framework (MOF)–drug composites is demonstrated under different external stimuli. 1,3,5‐Benzenetricarboxylic acid (H3BTC) is used as an organic ligand, and iron acetate and zinc nitrate are used as metal sources to synthesize Fe–BTC and Zn–BTC MOFs, which are known to be biocompatible. The in situ formation of MOF–drug composites demonstrates high drug loading capacity compared to conventional methods. The present methodology is devoid of any extra steps for loading the drug after synthesis. Moreover, the drug loading is also independent of pore size of the MOF as the drug molecules are embedded inside the MOF during their in situ formation. The drug release was monitored under external stimuli including change to acidic pH and the presence of biocompatible liposomes for a period of more than 72 h. Steady‐state fluorescence spectroscopy is used to monitor the drug release as a function of time and confocal laser scanning microscopy is used to unravel the post‐release fate of doxorubicin in the presence of liposomes. It is found that drug release rate is higher for the Zn–BTC–dox composite than for the Fe–BTC–dox composite. This is attributed to the stronger binding between dox and Fe‐BTC than that between dox and Zn–BTC. This study highlights a novel approach for the preparation of MOF–drug composites in an aqueous medium for future biomedical applications.  相似文献   

15.
16.
New antimalarial drugs   总被引:6,自引:0,他引:6  
Approximately 40% of the world population live in areas with the risk of malaria. Each year, 300-500 million people suffer from acute malaria, and 0.5-2.5 million die from the disease. Although malaria has been widely eradicated in many parts of the world, the global number of cases continues to rise. The most important reason for this alarming situation is the rapid spread of malaria parasites that are resistant to antimalarial drugs, especially chloroquine, which is by far the most frequently used. The development of new antimalarial drugs has been neglected since the 1970s owing to the end colonialism, changes in the areas of military engagement, and the restricted market potential. Only in recent years, in part supported by public funding programs, has interest in the development of antimalarial drugs been renewed. New data available from the recently sequenced genome of the malaria parasite Plasmodium falciparum and the application of methods of modern drug design promise to bring significant development in the fight against this disease.  相似文献   

17.
18.
谢建伟  苏为科  许建帼 《合成化学》2004,12(6):540-544,585
综述了抗癫痫药奥卡西平的各种合成方法,并评价了其优缺点。参考文献37篇  相似文献   

19.
Metal–organic frameworks (MOFs) are emerging as leading candidates for nanoscale drug delivery, as a consequence of their high drug capacities, ease of functionality, and the ability to carefully engineer key physical properties. Despite many anticancer treatment regimens consisting of a cocktail of different drugs, examples of delivery of multiple drugs from one MOF are rare, potentially hampered by difficulties in postsynthetic loading of more than one cargo molecule. Herein, we report a new strategy, multivariate modulation, which allows incorporation of up to three drugs in the Zr MOF UiO‐66 by defect‐loading. The drugs are added to one‐pot solvothermal synthesis and are distributed throughout the MOF at defect sites by coordination to the metal clusters. This tight binding comes with retention of crystallinity and porosity, allowing a fourth drug to be postsynthetically loaded into the MOFs to yield nanoparticles loaded with cocktails of drugs that show enhancements in selective anticancer cytotoxicity against MCF‐7 breast cancer cells in vitro. We believe that multivariate modulation is a significant advance in the application of MOFs in biomedicine, and anticipate the protocol will also be adopted in other areas of MOF chemistry, to easily produce defective MOFs with arrays of highly functionalised pores for potential application in gas separations and catalysis.  相似文献   

20.
化合物库的组合技巧和组合合成   总被引:2,自引:0,他引:2  
喻爱明  杨华铮 《有机化学》1998,18(2):186-191
从化合物库的组合技巧和组合合成方法两个方面探讨了组合化学及其在药物开发中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号