首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon irradiation with ns laser pulses at 355 nm, 2-aminoanthracene in SDS micelles readily produces hydrated electrons. These “super-reductants” rapidly attack substrates such as chloro-organics and convert them into carbon-centred radicals through dissociative electron transfer. For a catalytic cycle, the aminoanthracene needs to be restored from its photoionization by-product, the radical cation, by a sacrificial donor. The ascorbate monoanion can only achieve this across the micelle–water interface, but the monoanion of ascorbyl palmitate results in a fully micelle-contained regenerative electron source. The shielding by the micelle in the latter case not only increases the life of the catalyst but also strongly suppresses the interception of the carbon-centred radicals by the hydrogen-donating ascorbate moiety; and in conjunction with the high local concentrations effected by the pulsed laser, termination by radical dimerization thus dominates. We have obtained a complete and consistent picture through monitoring the individual steps and the assembled system by flash photolysis on fast and slow timescales, from microseconds to minutes; and in preparative studies on a variety of substrates, we have achieved up to quantitative dimerization with a turnover on the order of 1 mmol per hour.  相似文献   

2.
Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (HEH) has been utilized as a visible-light photoredox catalyst for the cross coupling of arylhalides and arylsulfinates without transition metal, sacrificial agent, and mediator. This method is compatible with various functional groups and provides diaryl sulfones in good to high yields. Mechanistic studies indicate that this reaction undergoes the stepwise light irradiation of HE, single electron transfer (SET) in donor–acceptor complex (DAC) from *HE to arylhalide, trapping of aryl radical with sulfinate, and SET oxidation of sulfone radical anion by HE. to sulfone by the DAC method.  相似文献   

3.
The ability of multiple CF3‐substituted arenes to act as acceptors for anions is investigated. The results of quantum‐chemical calculations show that a high degree of trifluoromethyl substitution at the aromatic ring results in a positive quadrupole moment. However, depending on the polarizability of the anion and on the substitution at the arene, three different modes of interaction, namely Meisenheimer complex, side‐on hydrogen bonding, or anion–π interaction, can occur. Experimentally, the side‐on as well as a η2‐type π‐complex are observed in the crystal, whereas in solution only side‐on binding is found.  相似文献   

4.
A calix[4]arene ligand, in which two of the phenol functions are replaced by pyrazole units has been employed to mimic the His2–Tyr2 (His: histidine, Tyr: tyrosine) ligand sphere within the active site of the galactose oxidase (GO). The calixarene backbone forces the corresponding copper(II) complex into a see-saw-type structure, which is hitherto unprecedented in GO modelling chemistry. It undergoes a one-electron oxidation that is centered at the phenolate donor leading to a copper-coordinated phenoxyl radical like in the GO. Accordingly, the complex was tested as a functional model and indeed proved capable of oxidizing benzyl alcohol to the respective aldehyde using two phenoxyl-radical equivalents as oxidants. Finally, the results show that the calixarene platform can be utilized to arrange donor functions to biomimetic binding pockets that allow for the creation of novel types of model compounds.  相似文献   

5.
The synthesis, structure and anion‐recognition properties of a new strapped‐porphyrin‐containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor–acceptor and coordinative pyridine–zinc interactions. The [2]catenane incorporates a three‐dimensional, hydrogen‐bond‐donating anion‐binding pocket; solid‐state structural analysis of the catenane?chloride complex reveals that the chloride anion is encapsulated within the catenane’s interlocked binding cavity through six convergent CH????Cl and NH???Cl hydrogen‐bonding interactions and solution‐phase 1H NMR titration experiments demonstrate that this complementary hydrogen‐bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution.  相似文献   

6.
The first example of a two‐state (neutral and reduced), stable electron‐accepting material and its radical anion is presented. FV‐PDI, generated from cyclocarbonylation and then a carbonyl coupling reaction, shows a largely degenerate LUMO of ?4.38 eV based on the delocalization of π‐electrons across the whole molecular skeleton through a fulvalene bridge. The stability and electron affinity allow spontaneous electron transfer to afford a stable radical anion. Spectroscopic characterization and structural elucidation showed that the radical anion [FV‐PDI].? has remarkable stability and near‐infrared absorptions extending to 1200 nm. Single‐crystal X‐ray diffraction analyses revealed significant changes in the molecular shape and packing arrangement of the formed radical anion. The central C?C bond linking the two PDI halves is lengthened from approximately 1.33 to 1.43 Å, and the alternating arrangement of positively and negatively charged units favor the stable charge‐transfer complex.  相似文献   

7.
The dye rhodamine 6G can act as a photocatalyst through photoinduced electron transfer. After electronic excitation with green light, rhodamine 6G takes an electron from an electron donor, such as N,N-diisopropylethylamine, and forms the rhodamine 6G radical. This radical has a reduction potential of around −0.90 V and can split phenyl iodide into iodine anions and phenyl radicals. Recently, it has been reported that photoexcitation of the radical at 420 nm splits aryl bromides into bromide anions and aryl radicals. This requires an increase in reduction potential, hence the electronically excited rhodamine 6G radical was proposed as the reducing agent. Here, we present a study of the mechanism of the formation and photoreactions of the rhodamine 6G radical by transient absorption spectroscopy in the time range from femtoseconds to minutes in combination with quantum chemical calculations. We conclude that one photon of 540 nm light produces two rhodamine 6G radicals. The lifetime of the photoexcited radicals of around 350 fs is too short to allow diffusion-controlled interaction with a substrate. A fraction of the excited radicals ionize spontaneously, presumably producing solvated electrons. This decay produces hot rhodamine 6G and hot rhodamine 6G radicals, which cool with a time constant of around 10 ps. In the absence of a substrate, the ejected electrons recombine with rhodamine 6G and recover the radical on a timescale of nanoseconds. Photocatalytic reactions occur only upon excitation of the rhodamine 6G radical, and due to its short excited-state lifetime, the electron transfer to the substrate probably takes place through the generation of solvated electrons as an additional step in the proposed photochemical mechanism.  相似文献   

8.
Silicon should be an ideal semiconductor material if it can be proven usable for photocatalytic water splitting, given its high natural abundance. Thus it is imperative to explore the possibility of water splitting by running photocatalysis on a silicon surface and to decode the mechanism behind it. It is reported that hydrogen gas can indeed be produced from Si nanowires when illuminated in water, but the reactions are not a real water‐splitting process. Instead, the production of hydrogen gas on the Si nanowires occurs through the cleavage of Si? H bonds and the formation of Si? OH bonds, resulting in the low probability of generating oxygen. On the other hand, these two types of surface dangling bonds both extract photoexcited electrons, whose competition greatly impacts on carrier lifetime and reaction efficiency. Thus surface chemistry holds the key to achieving high efficiency in such a photocatalytic system.  相似文献   

9.
Controlling light‐induced accumulation of electrons or holes is desirable in view of multi‐electron redox chemistry, for example for the formation of solar fuels or for photoredox catalysis in general. Excitation with multiple photons is usually required for electron or hole accumulation, and consequently pump‐pump‐probe spectroscopy becomes a valuable spectroscopic tool. In this work, we excited a triarylamine‐Ru(bpy)32+‐anthraquinone triad (bpy = 2,2′‐bipyridine) with two temporally delayed laser pulses of different color and monitored the resulting photoproducts. Absorption of the first photon by the Ru(bpy)32+ photosensitizer generated a triarylamine radical cation and an anthraquinone radical anion by intramolecular electron transfer. Subsequent selective excitation of either one of these two radical ion species then induced rapid reverse electron transfer to yield the triad in its initial (ground) state. This shows in direct manner that after absorption of a first photon and formation of the primary photoproducts, the absorption of a second photon can lead to unproductive electron transfer events that counteract further charge accumulation. In principle, this problem is avoidable by careful excitation wavelength selection in combination with good molecular design.  相似文献   

10.
Simply mixing solutions of the title compound 1 and tetrathiafulvene (TTF) in acetonitrile provides the charge-transfer complex 2 . Here, 1 functions as a novel electron acceptor and is present in the complex as a radical anion. An electrical conductivity of up to 3 S cm−1 was determined for 2 with a two-point powder measurement.  相似文献   

11.
Introducing spin onto organic ligands that are coordinated to rare earth metal ions allows direct exchange with metal spin centres. This is particularly relevant for the deeply buried 4f-orbitals of the lanthanide ions that can give rise to unparalleled magnetic properties. For efficacy of exchange coupling, the donor atoms of the radical ligand require high-spin density. Such molecules are extremely rare owing to their reactive nature that renders isolation and purification difficult. Here, we demonstrate that a 2,2′-azopyridyl (abpy) radical (S = 1/2) bound to the rare earth metal yttrium can be realized. This molecule represents the first rare earth metal complex containing an abpy radical and is unambigously characterized by X-ray crystallography, NMR, UV-Vis-NIR, and IR spectroscopy. In addition, the most stable isotope 89Y with a natural abundance of 100% and a nuclear spin of ½ allows an in-depth analysis of the yttrium–radical complex via EPR and HYSCORE spectroscopy. Further insight into the electronic ground state of the radical azobispyridine-coordinated metal complex was realized through unrestricted DFT calculations, which suggests that the unpaired spin density of the SOMO is heavily localized on the azo and pyridyl nitrogen atoms. The experimental results are supported by NBO calculations and give a comprehensive picture of the spin density of the azopyridyl ancillary ligand. This unexplored azopyridyl radical anion in heavy element chemistry bears crucial implications for the design of molecule-based magnets particularly comprising anisotropic lanthanide ions.

Unambiguous characterization of the first 2,2′-azobispyridine radical-containing rare earth metal complex through X-ray crystallography, DFT computations, EPR and HYSCORE spectroscopy.  相似文献   

12.
The photopolymerization of acrylamide (AA) initiated by the metallic complex tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)3+2] in the presence of aliphatic and aromatic amines as co‐initiators was investigated in aqueous solution. Aromatic amines, which are good quenchers of the emission of the metal‐to‐ligand‐charge‐transfer excited state of the complex, are more effective co‐initiators than those that do not quench the luminescence of Ru(bpy)3+2, such as aliphatic amines and aniline. Laser‐flash photolysis experiments show the presence of the reduced form of the complex, Ru(bpy)3+1, for all the amines investigated. For aliphatic amines, the yield of Ru(bpy)3+1 increases with temperature, and on the basis of these experiments, a metal‐centered excited state is proposed as the reactive intermediate in the reaction with these amines. The decay of the transient Ru(bpy)3+1 is faster in the presence of AA. This may be understood by an electron‐transfer process from Ru(bpy)3+1 to AA, regenerating Ru(bpy)3+2 and producing the radical anion of AA. It is proposed that this radical anion protonates in a fast process to give the neutral AA radical, initiating in this way the polymerization chain. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4265–4273, 2001  相似文献   

13.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

14.
The influence of a coordinated π‐radical on the spin crossover properties of an octahedral iron(II) complex was investigated by preparing and isolating the iron(II) complex containing the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)pyridinophane and the radical anion of N,N′‐diphenyl‐acenaphtene‐1,2‐diimine as ligands. This spin crossover complex was obtained by a reduction of the corresponding low‐spin iron(II) complex with the neutral diimine ligand, demonstrating that the reduction of the strong π‐acceptor ligand is accompanied by a decrease in the ligand field strength. Characterization of the iron(II) radical complex by structural, magnetochemical, and spectroscopic methods revealed that spin crossover equilibrium occurs above 240 K between an S=1/2 ground state and an S=3/2 excited spin state. The possible origins of the fast spin interconversion observed for this complex are discussed.  相似文献   

15.
The lithium dimethylcuprate addition on six substituted bicyclo[3.1.0]hex-3-en-2-ones was studied. For five ketones, both expected 1,4-addition compound and 1,6-addition compounds are obtained. The last products result from a cyclopropane bond cleavage. There is no evidence for a correlation between the radical anion half-lives and the formation of ring opened compounds. In many case, the broken bond is different from that which is concerned in the reduction by solvated electrons in liquid ammonia. So the 1,6-addition products do nor probably arise through an electron transfer mechanism. However, a nucleophilic attack of the substrate by a copper atom followed by a reductive elimination inside the complex can be supposed; then both the nature and stereochemistry of reaction products can be explained.  相似文献   

16.
Three platinum(II) terpyridylacetylide charge-transfer complexes possessing a lone ancillary ligand systematically varied in phenylacetylide π-conjugation length, [Pt((t)Bu(3)tpy)([C≡CC(6)H(4)](n)H)]ClO(4) (n = 1-3), are evaluated as photosensitizers (PSs) for visible-light-driven (λ > 420 nm) hydrogen production in the presence of a cobaloxime catalyst and the sacrificial electron donor triethanolamine (TEOA). Excited-state reductive quenching of the PS by TEOA produces PS(-) (k(q) scales with the driving force as 1 > 2 > 3), enabling thermal electron transfer to the cobalt catalyst. The initial H(2) evolution is directly proportional to the incident photon flux and visible-light harvesting capacity of the sensitizer, 3 > 2 > 1. The combined data suggest that PSs exhibiting attenuated bimolecular reductive quenching constants with respect to the diffusion limit can overcome this deficiency through improved light absorption in homogeneous H(2)-evolving compositions.  相似文献   

17.
The copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is used to synthesize complex polymer architectures. In this work, we demonstrate the control of this reaction at 25 °C between polystyrene (PSTY) chains through modulating the catalytic activity by varying the combinations of copper source (i.e., Cu(I)Br or copper wire), ligand (PMDETA and/or triazole ligand), and solvent (toluene or DMF). The fastest rate of CuAAC was found using Cu(I)Br/PMDETA ligand in toluene, reaching near full conversion after 15 min at 25 °C. For the same catalysts system, DMF also gave fast rates of “click” (95% conversion in 25 min). Cu(0) wire in toluene gave a conversion of 98% after 600 min, a much higher rate than that observed for the same catalyst system used in DMF. When the PSTY had a chemically bound triazole ring close to the site of reaction, the rate of CuAAC in toluene increased significantly, 97% in 180 min at 25 °C, in agreement with our previously published results. This suggests that rapid rates can be obtained using copper wire and will have direct applications to the synthesis of compound where air, removal of copper, and reuse of the copper catalyst are required. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Combining single electron transfer between a donor substrate and a catalyst‐activated acceptor substrate with a stereocontrolled radical–radical recombination enables the visible‐light‐driven catalytic enantio‐ and diastereoselective synthesis of 1,2‐amino alcohols from trifluoromethyl ketones and tertiary amines. With a chiral iridium complex acting as both a Lewis acid and a photoredox catalyst, enantioselectivities of up to 99 % ee were achieved. A quantum yield of <1 supports the proposed catalytic cycle in which at least one photon is needed for each asymmetric C? C bond formation mediated by single electron transfer.  相似文献   

19.
A range of N‐donor ligands based on the 1H‐pyridin‐(2E)‐ylidene (PYE) motif have been prepared, including achiral and chiral examples. The ligands incorporate one to three PYE groups that coordinate to a metal through the exocyclic nitrogen atom of each PYE moiety, and the resulting metal complexes have been characterised by methods including single‐crystal X‐ray diffraction and NMR spectroscopy to examine metal–ligand bonding and ligand dynamics. Upon coordination of a PYE ligand to a proton or metal‐complex fragment, the solid‐state structures, NMR spectroscopy and DFT studies indicate that charge redistribution occurs within the PYE heterocyclic ring to give a contribution from a pyridinium–amido‐type resonance structure. Additional IR spectroscopy and computational studies suggest that PYE ligands are strong donor ligands. NMR spectroscopy shows that for metal complexes there is restricted motion about the exocyclic C? N bond, which projects the heterocyclic N‐substituent in the vicinity of the metal atom causing restricted motion in chelating‐ligand derivatives. Solid‐state structures and DFT calculations also show significant steric congestion and secondary metal–ligand interactions between the metal and ligand C? H bonds.  相似文献   

20.
A novel water soluble ligand-bridged cobalt(II) coordination polymer has been synthesized by reacting the new ligand, 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (isonicotinic) hydrazone (H(2)L) with Co(NO(3))(2)·6H(2)O and characterized by spectral, analytical and structural methods. Single crystal X-ray diffraction studies revealed that the Co(II) complex, {[Co(H(2)L)(H(2)O)(2)](NO(3))(2)·3H(2)O}(n) has a slightly distorted octahedral geometry around the central Co(II) ion; the ligand is coordinated through the ONO donor atoms to one Co(II) metal center and bridged through the pyridine nitrogen atom to another similar Co(II) center so as to form a one-dimensional polymeric unit. The interaction of the ligand and the complex with calf thymus DNA (CT-DNA) has been explored by absorption and emission titration methods, which revealed that the compounds could interact with CT-DNA through intercalation. The interactions of the compounds with bovine serum albumin (BSA) were also investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods. The results indicated that the complex exhibited a strong binding to BSA over the ligand. Investigation of the antioxidative properties showed that the polymeric Co(II) complex has a strong radical scavenging potency against hydroxyl radicals, 2,2-diphenyl-1-picrylhydrazyl radicals, nitric oxide and superoxide anion radicals. Further, the cytotoxic effect of the compounds examined on cancerous cell lines, such as human cervical cancer cells (HeLa), human laryngeal epithelial carcinoma cells (HEp-2), human liver carcinoma cells (Hep G2), human skin cancer cells (A431) and non-cancerous NIH 3T3 mouse embryonic fibroblasts cell lines showed that the complex exhibited substantial anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号