首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new efficient and concise enantioselective synthetic method for (?)‐horsfiline is reported. (?)‐Horsfiline could be obtained from diphenylmethyl tert‐butyl malonate in 9 steps (32 %,>99 % ee) by using the enantioselective phase‐transfer catalytic allylation (91 % ee) as the key step. This approach can be applied as a practical route for the large‐scale synthesis of spirooxindole natural products, which enables a systematic investigation of their biological activity to be performed.  相似文献   

2.
The catalytic asymmetric total syntheses of (?)‐galanthamine ( 1 ) and (?)‐lycoramine ( 2 ) have been achieved by using a conceptually new strategy featuring two metal‐catalyzed reactions as the key steps. A new method for the construction of 3,4‐fused benzofurans has been developed through a palladium‐catalyzed intramolecular Larock annulation reaction, which was successfully applied to the construction of the ABD tricyclic skeleton of 1 and 2 . To achieve the asymmetric synthesis of 1 and 2 , a ScIII/N,N′‐dioxide complex was used to catalyze the enantioselective conjugate addition of 3‐alkyl‐substituted benzofuranone to methyl vinyl ketone for the construction of a chiral quaternary carbon center.  相似文献   

3.
The successful application of dihydropyrido[1,2‐a]indolone (DHPI) substrates in Pd‐catalyzed asymmetric allylic alkylation chemistry facilitates rapid access to multiple alkaloid frameworks in an enantioselective fashion. Strategic bromination at the indole C3 position greatly improved the allylic alkylation chemistry and enabled a highly efficient Negishi cross‐coupling downstream. The first catalytic enantioselective total synthesis of (?)‐goniomitine, along with divergent formal syntheses of (+)‐aspidospermidine and (?)‐quebrachamine, are reported herein.  相似文献   

4.
Starting from inexpensive (E)‐β‐farnesene ( 1 ), an eight‐step enantioselective synthesis of the olfactively precious Ambrox® ((?)‐ 2a ) has been performed. The crucial step is the catalytic asymmetric isomerization of (2E,6E)‐N,N‐diethylfarnesylamine ( 3 ) to the corresponding enamine (?)‐(R,E)‐ 4a , applying Takasago's well‐known industrial methodology. The resulting dihydrofarnesal ((+)‐(R)‐ 5 ) (90% yield, 96% ee), obtained after in situ hydrolysis (AcOH, H2O), was then cyclized under catalytic SnCl4 conditions, via its corresponding unreported enol acetate (?)‐(R)‐ 4b , to afford trans‐decalenic aldehyde (+)‐ 6a . Subsequent transformations furnished bicyclic ketone (?)‐ 8a and unsaturated nitrile (+)‐ 11 , both reported as intermediates to access to (?)‐ 2a .  相似文献   

5.
Sterically hindered substrates can be employed in an enantioselective palladium‐catalyzed α‐arylation with the chiral monophosphorus ligand BI‐DIME. This process enabled an efficient synthesis of the antidepressant (S)‐nafenodone, a four‐step enantioselective synthesis of the Sceletium alkaloid (+)‐sceletium A‐4, a concise five‐step enantioselective synthesis of (?)‐corynoline, as well as a three‐step preparation of (?)‐DeN‐corynoline.  相似文献   

6.
Blennolide A can be synthesized through an enantioselective domino‐Wacker/carbonylation/methoxylation reaction of 7 a with 96 % ee and an enantioselective Wacker oxidation of 7 b with 89 % ee. Further transformations led to the α,β‐unsaturated ester (E)‐ 17 , which was subjected to a highly selective Michael addition, introducing a methyl group to give 18 a . After a threefold oxidation and an intramolecular acylation, the tetrahydroxanthenone 4 was obtained, which could be transformed into (?)‐blennolide A (ent‐ 1 ) in a few steps.  相似文献   

7.
A short, nine‐step, highly enantioselective synthesis of (?)‐erogorgiaene and its C‐11 epimer is reported. The key stereochemistry controlling steps involve catalytic asymmetric crotylation, anionic oxy‐Cope rearrangement and cationic cyclisation. (?)‐Erogorgiaene exhibited promising antitubercular activity against multidrug‐resistant strains of Mycobacterium tuberculosis.  相似文献   

8.
A seven‐step enantioselective total synthesis of (?)‐terengganensine A, a complex heptacyclic monoterpene indole alkaloid, was accomplished. Key steps included: a) Noyori's catalytic enantioselective transfer hydrogenation of the iminium salt to set up the absolute configuration at the C21 position; b) a highly diastereoselective C7 benzoyloxylation with dibenzoyl peroxide under mild conditions; and c) an integrated one‐pot oxidative cleavage of cyclopentene/triple cyclization/hydrolysis sequence for the construction of the dioxa azaadamantane motif with complete control of four newly generated stereocenters.  相似文献   

9.
For the synthesis of (?)‐diversonol (ent‐ 1 ), an enantioselective domino‐Wacker/carbonylation/methoxylation reaction and an enantioselective Wacker oxidation were used to give the chroman in high yield and 96 % and 93 % ee, respectively. Dihydroxylation at the vinyl moiety using the Sharpless procedure and a Wittig–Horner reaction followed by hydrogenation, benzylic oxidation, and an intramolecular acylation provided the tetrahydroxanthenone, from which ent‐ 1 is accessible in a few steps. Furthermore, the synthesis of the diastereomeric diversonol rac‐1,9 a‐epi‐diversonol (rac‐ 41 ) is also described.  相似文献   

10.
An enantioselective total synthesis of (?)‐cladospolide B was described. The key steps in this synthesis include(a) a Sharpless asymmetric dihydroxylation to elaborate syn diol at C‐4 and C‐5 positions; (b) a Mitsunobu esterification to reverse the configuration at C‐11 from (S) to (R); and (c) a ring‐closing metathesis to access the 12‐membered macrocyclic ring.  相似文献   

11.
The first chemical syntheses of complex, bis‐Strychnos alkaloids (?)‐sungucine ( 1 ), (?)‐isosungucine ( 2 ), and (?)‐strychnogucine B ( 3 ) from (?)‐strychnine ( 4 ) is reported. Key steps included (1) the Polonovski–Potier activation of strychnine N‐oxide; (2) a biomimetic Mannich coupling to forge the signature C23?C5′ bond that joins two monoterpene indole monomers; and (3) a sequential HBr/NaBH3CN‐mediated reduction to fashion the ethylidene moieties in 1 – 3 . DFT calculations were employed to rationalize the regiochemical course of reactions involving strychnine congeners.  相似文献   

12.
A simple, efficient synthesis is reported for (?)‐cis‐α‐ and (?)‐cis‐γ‐irone, two precious constituents of iris oils, in ≥99 % diastereomeric and enantioselective ratios. The two routes diverge from a common intermediate prepared from (?)‐epoxygeraniol. Of general interest in this approach is the installation of the enone moiety of irones through a NHC?AuI‐catalyzed Meyer–Schuster‐like rearrangement of a propargylic benzoate and the use of Wilkinson’s catalyst for the stereoselective hydrogenation of a prostereogenic exocyclic double bond to secure the critical cis stereochemistry of the alkyl groups at C2 and C6 of the irones. The stereochemical aspects of this reaction are rationally supported by DFT calculation of the conformers of the substrates undergoing the hydrogenation and by a modeling study of the geometry of the rhodium η2 complexes involved in the diastereodifferentiation of the double bond faces. Thus, computational investigation of the η2 intermediates formed in the catalytic cycle of prostereogenic alkene hydrogenation by using Wilkinson’s catalyst could be highly predictive of the stereochemistry of the products.  相似文献   

13.
An effective catalytic system that imparts high enantioselectivity has been disclosed for the synthesis of optically active alcohols, which may undergo further chemical transformations. The enantioselective alkylation of aldehydes with dialkylzincs to afford the corresponding optically active alcohols with excellent enantioselectvities has been achieved in the presence of 0.1–0.5 mol % of the camphor‐derived chiral ligand (?)‐2‐exo‐morpholinoisobornane‐10‐thiol (MITH) ( 1 ) at room temperature or at 0 °C.  相似文献   

14.
A simple and efficient enantioselective synthesis of chromene, (?)‐(R)‐cordiachromene ( 1 ), and (?)‐(R)‐dictyochromenol ( 2 ) has been accomplished. This convergent synthesis utilizes intramolecular SNAr reaction for the formation of chroman ring, and Seebach's method of ‘self‐reproduction of chirality’ should establish the (R)‐configuration of the C(2) side chain as key steps.  相似文献   

15.
(?)‐Daphnilongeranin B and (?)‐daphenylline are two hexacyclic Daphniphyllum alkaloids, each containing a complex cagelike backbone. Described herein are the first asymmetric total synthesis of (?)‐daphnilongeranin B and a bioinspired synthesis of (?)‐daphenylline with an unusual E ring embedded in a cagelike framework. The key features include an intermolecular [3+2] cycloaddition, a late‐stage aldol cyclization to install the F ring of daphnilongeranin B, and a bioinspired cationic rearrangement leading to the tetrasubstituted benzene ring of daphenylline.  相似文献   

16.
A scalable enantioselective total synthesis of (?)‐goniomitine has been developed by using an iridium‐catalyzed asymmetric hydrogenation of an exocyclic enone ester to control the configuration of the molecule. The synthesis begins from commercially available starting materials, and proceeds through an integrated asymmetric ketone hydrogenation, Johnson–Claisen rearrangement, and one‐pot oxidation/deprotection/cyclization process. With this highly efficient and scalable strategy, (?)‐goniomitine was synthesized in eleven steps with 27 % overall yield, and formal enantioselective syntheses of (+)‐1,2‐dehydroaspidospermidine, (+)‐aspidospermidine, and (+)‐vincadifformine were also achieved.  相似文献   

17.
Cyclopianes are novel diterpenes featuring a highly strained 6/5/5/5 tetracyclic core embedded with 6–8 consecutive stereocenters. The concise total syntheses of (?)‐conidiogenone B, (?)‐conidiogenone, and (?)‐conidiogenol have been accomplished in 14–17 steps. The present work features a HAT‐mediated alkene–nitrile cyclization to access the cis‐biquinane, a Nicholas/Pauson–Khand reaction to construct the linear triquinane, and a Danheiser annulation to afford the congested angular triquinane skeleton.  相似文献   

18.
A new synthesis of (?)‐(R)‐muscone ((R)‐ 1 ) by means of enantioselective protonation of a bicyclic ketone enolate as the key step (see 6 →(S)‐ 4 in Scheme 2) is presented. The C15 macrocyclic system is obtained by ozonolysis (Scheme 7).  相似文献   

19.
Reported is an unprecedented catalytic enantioselective desymmetrizing aza‐Wacker reaction. In the presence of a catalytic amount of a newly developed Pd(CPA)2(MeCN)2 catalyst (CPA=chiral phosphoric acid), a pyrox ligand, and molecular oxygen, cyclization of properly functionalized prochiral 3,3‐disubstituted cyclohexa‐1,4‐dienes afforded enantioenriched cis‐3a‐substituted tetrahydroindoles in good yields with excellent enantioselectivities. A cooperative effect between the phosphoric acid and the pyrox ligand ensured efficient transformation. This reaction was tailor‐made for Amaryllidaceae and Sceletium alkaloids as illustrated by its application in the development of the concise and divergent total synthesis of (?)‐mesembrane and (+)‐crinane.  相似文献   

20.
A novel and efficient strategy to build α‐benzylic quaternary cyclopentanones with excellent enantioselectivities (up to 96 % ee) and high yields (up to 99 % yield) has been developed, and its application demonstrated by the first catalytic asymmetric total synthesis of (?)‐1,14‐herbertenediol and the formal synthesis of (?)‐aphanorphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号