首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Friedel–Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1‐diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C F bonds in the presence of other benzylic leaving groups.  相似文献   

2.
A mild and catalytic method to form difluoromethylated arenes through the activation of benzylic C? H bonds has been developed. Utilizing AgNO3 as the catalyst, various arenes with diverse functional groups undergo activation/fluorination of benzylic C? H bonds with commercially available Selectfluor reagent as a source of fluorine in aqueous solution. The reaction is operationally simple and amenable to gram‐scale synthesis.  相似文献   

3.
A selective and mild method for the benzylic fluorination of aromatic azaheterocycles with Selectfluor is described. These reactions take place by a previously unreported mechanism, in which electron transfer from the heterocyclic substrate to the electrophilic fluorinating agent Selectfluor eventually yields a benzylic radical, thus leading to the desired C?F bond formation. This mechanism enables high intra‐ and intermolecular selectivity for aza‐heterocycles over other benzylic components with similar C?H bond‐dissociation energies.  相似文献   

4.
We report a Cu/Fe co‐catalyzed Ritter‐type C?H activation/amination reaction that allows efficient and selective intermolecular functionalization of benzylic C?H bonds. This new reaction is featured by simple reaction conditions, readily available reagents and general substrate scope, allowing facile synthesis of biologically interesting nitrogen containing heterocycles. The Cu and Fe salts were found to play distinct roles in this cooperative catalysis.  相似文献   

5.
A silver‐promoted oxidative benzylic C?H trifluoromethoxylation has been reported for the first time. With trifluoromethyl arylsulfonate as the trifluoromethoxylation reagent, various arenes, having diverse functional groups, undergo trifluoromethoxylation of their benzylic C?H bonds to form trifluoromethyl ethers under mild reaction conditions. In addition, the trifluoromethoxylation and the fluorination of methyl groups of electron‐rich arenes have been achieved to prepare α‐fluorobenzyl trifluoromethyl ethers in one step.  相似文献   

6.
Direct functionalization of the benzylic C?H bond of diarylmethanes is an important strategy for the synthesis of diarylmethine‐containing compounds. However, the methods developed to date for this purpose require a stoichiometric amount (usually more) of either a strong base or an oxidant. Reported here is the first catalytic benzylic C?H bond addition of diarylmethanes to styrenes and conjugated dienes. A potassium zincate complex, generated from potassium benzyl and zinc amide, acts as a catalyst and displays good activity and chemoselectivity. Considering the atom economy of the reaction and the ready availability of the catalyst, this reaction constitutes a practical, efficient method for diarylalkane synthesis.  相似文献   

7.
Methods that enable the direct C?H alkoxylation of complex organic molecules are significantly underdeveloped, particularly in comparison to analogous strategies for C?N and C?C bond formation. In particular, almost all methods for the incorporation of alcohols by C?H oxidation require the use of the alcohol component as a solvent or co‐solvent. This condition limits the practical scope of these reactions to simple, inexpensive alcohols. Reported here is a photocatalytic protocol for the functionalization of benzylic C?H bonds with a wide range of oxygen nucleophiles. This strategy merges the photoredox activation of arenes with copper(II)‐mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C?O bonds with high site selectivity, chemoselectivity, and functional‐group tolerance using only two equivalents of the alcohol coupling partner. This method enables the late‐stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential applications in synthesis and medicinal chemistry.  相似文献   

8.
A new enantioselective palladium(II)‐catalyzed benzylic C?H arylation reaction of amines is enabled by the bidentate picolinamide (PA) directing group. This reaction provides the first example of enantioselective benzylic γ‐C?H arylations of alkyl amines, and proceeds with up to 97 % ee. The 2,2′‐dihydroxy‐1,1′‐binaphthyl (BINOL) phosphoric acid ligand, Cs2CO3, and solvent‐free conditions are essential for high enantioselectivity. Mechanistic studies suggest that multiple BINOL ligands are involved in the stereodetermining C?H palladation step.  相似文献   

9.
王飞  胡金波 《中国化学》2009,27(1):93-98
三氟甲磺酸被发现能够高效地活化(SP3)碳-氟键。因此,在其催化作用下,室温时含三氟甲基的芳香化合物与苯反应得到二苯甲酮类化合物。在同样的Brønsted 酸催化下,其中一些含三氟甲基的芳香化合物亦可发生分子内的芳基化反应,而此时分子间的芳基化受抑制。强的氢氟间的相互作用或氢键作用,被认为对该Brønsted 酸参与碳氟键活化的反应起了重要作用。  相似文献   

10.
α,α‐Dibromotoluene 1 was found to be polymerized by the reaction with excess Mg to give poly(phenylmethylene)s 2 , whose main chains were partially dehydrogenated to carbon–carbon double bonds (C?C). The C?Cs in 2 can be brominated by treatment with Br2. The polymerization mechanism was presumed to include the formation of Grignard reagents of various species with benzylic C? Br bonds and the nucleophilic attacks of the Grignard reagents to various compounds with benzylic C? Br bonds. Copolymerization of 1 with dichlorodimethylsilane successfully proceeded. Mg/Cu‐mediated copolycondensation of 1 with 1,6‐dibromohexane proceeded to give polymers that have similar compositions to those of random copolymers of ethylene and styrene. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5661–5671, 2006  相似文献   

11.
Easily accessible benzylic esters of 3‐butynoic acids in a gold‐catalyzed cyclization/rearrangement cascade reaction provided 3‐propargyl γ‐butyrolactones with the alkene and the carbonyl group not being conjugated. Crossover experiments showed that the formation of the new C?C bond is an intermolecular process. Initially propargylic–benzylic esters were used, but alkyl‐substituted benzylic esters worked equally well. In the case of the propargylic–benzylic products, a simple treatment of the products with aluminum oxide initiated a twofold tautomerization to the allenyl‐substituted γ‐butyrolactones with conjugation of the carbonyl group, the olefin, and the allene. The synthetic sequence can be conducted stepwise or as a one‐pot cascade reaction with similar yields. Even in the presence of the gold catalyst the new allene remains intact.  相似文献   

12.
The benzylic functionalization of alkylpyridines is an important pathway for pyridine derivatives synthesis. The reaction partners, however, were mostly limited to highly reactive polar electrophiles. Herein, we report a potassium amide‐catalyzed selective benzylic C?H bond addition of alkylpyridines to styrenes. Potassium bis(trimethylsilyl)amide (KHMDS), a readily available Brønsted base, showed excellent catalytic activity and chemoselectivity. A series of alkylpyridine derivatives, including benzylic quaternary carbon substituted pyridines, were obtained in good to high yield. Preliminary mechanistic studies revealed that the deprotonation equilibrium is probably responsible for the excellent selectivity.  相似文献   

13.
A novel enantioselective copper‐catalyzed arylation of benzylic C?H bonds, using alkylarenes as a limiting reagent, has been developed. A chiral bisoxazoline ligand bearing an acetate ester moiety plays a key role in both the reactivity and enantioselectivity of the reaction. The reaction provides efficient access to various chiral 1,1‐diarylalkanes in good yields with good to excellent enantioselectivities, and displays excellent functional‐group tolerance.  相似文献   

14.
Due to the great value of fluorinated arenes in agrochemistry, medicinal chemistry and materials science, development of methods for preparation of fluorinated arenes is of high importance. They can be either accessed by arene fluorination or by partial arene defluorination. However, the carbon?fluorine bond belongs to the strongest σ‐bonds, which renders C?F activation highly challenging. Here it is shown that aryl and alkyl isonitriles efficiently activate the strong C?F bond in perfluoroarenes by simple UV irradiation under mild conditions. Reactions proceed by formal direct insertion of the isonitrile into the C?F bond without any transition metal. Activation occurs at arene C?F bonds whereas aliphatic C?F bonds remain unreacted. For selected perfluoroarenes C?F activation occurs with high regioselectivity and resulting imidoyl fluorides are transformed into other valuable compounds. Theoretical studies give insights into the reaction mechanism.  相似文献   

15.
A metal-free remote oxidative benzylic C?H amination of 4-methylanilides with N-fluorobenzenesulfonimide was reported. The reaction was promoted by a hypervalent iodine reagent and can be handled under mild and neutral conditions, providing the highly regioselective benzylic C?H amination products even with multi-substituted 4-methylanilides. It provided a novel and facile method for the construction of C(sp3)–N bonds.  相似文献   

16.
A mild and catalytic method to form difluoromethylated arenes through the activation of benzylic C H bonds has been developed. Utilizing AgNO3 as the catalyst, various arenes with diverse functional groups undergo activation/fluorination of benzylic C H bonds with commercially available Selectfluor reagent as a source of fluorine in aqueous solution. The reaction is operationally simple and amenable to gram‐scale synthesis.  相似文献   

17.
Podophyllotoxin is probably the most prominent representative of lignan natural products. Deoxy‐, epi‐, and podophyllotoxin, which are all precursors to frequently used chemotherapeutic agents, were prepared by a stereodivergent biotransformation and a biocatalytic kinetic resolution of the corresponding dibenzylbutyrolactones with the same 2‐oxoglutarate‐dependent dioxygenase. The reaction can be conducted on 2 g scale, and the enzyme allows tailoring of the initial, “natural” structure and thus transforms various non‐natural derivatives. Depending on the substitution pattern, the enzyme performs an oxidative C?C bond formation by C?H activation or hydroxylation at the benzylic position prone to ring closure.  相似文献   

18.
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α‐hydroxy C?H bonds. This approach employs zinc‐mediated alcohol deprotonation to activate α‐hydroxy C?H bonds while simultaneously suppressing C?O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn‐based Lewis acids also deactivates other hydridic bonds such as α‐amino and α‐oxy C?H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3‐step synthesis of the drug Prozac exemplifies the utility of this new method.  相似文献   

19.
A fluoride‐anion‐induced, regioselective ring expansion of benzocyclic ketones and α‐aryl cycloketones has been developed via insertion of arynes into unactivated benzylic C?C bonds. This reaction provides a straightforward, transition‐metal‐free avenue to prepare medium ring‐fused benzocarbocycles by creating “noble” seven‐, eight‐, and nine‐membered rings. Applications of this method in the creation of medium‐sized exocyclic and inner benzocyclic olefins, nine‐membered lactones, and lactams are described.  相似文献   

20.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号