首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural features of MUC1‐like glycopeptides bearing the Tn antigen (α‐O‐GalNAc‐Ser/Thr) in complex with an anti MUC‐1 antibody are reported at atomic resolution. For the α‐O‐GalNAc‐Ser derivative, the glycosidic linkage adopts a high‐energy conformation, barely populated in the free state. This unusual structure (also observed in an α‐S‐GalNAc‐Cys mimic) is stabilized by hydrogen bonds between the peptidic fragment and the sugar. The selection of a particular peptide structure by the antibody is thus propagated to the carbohydrate through carbohydrate/peptide contacts, which force a change in the orientation of the sugar moiety. This seems to be unfeasible in the α‐O‐GalNAc‐Thr glycopeptide owing to the more limited flexibility of the side chain imposed by the methyl group. Our data demonstrate the non‐equivalence of Ser and Thr O‐glycosylation points in molecular recognition processes. These features provide insight into the occurrence in nature of the APDTRP epitope for anti‐MUC1 antibodies.  相似文献   

2.
3.
All the previously reported supramolecular polymers based on crown ether‐based molecular recognition have been prepared in anhydrous organic solvents. This is mainly due to the weakness of crown ether‐based molecular recognition in the presence of water. Here we report a linear supramolecular polymer constructed from a heteroditopic monomer in an aqueous medium driven by crown ether‐based molecular recognition through the introduction of electrostatic attraction. In addition, the reversible transition between the linear supramolecular polymer and oligomers is achieved by adding acid and base. This study realizes the breakthrough of the solvent for supramolecular polymerization driven by crown ether‐based molecular recognition from anhydrous organic solvents to aqueous media. It is helpful for achieving supramolecular polymerization driven by crown ether‐based molecular recognition in a completely aqueous medium.  相似文献   

4.
The one‐dimensional (1D) transition‐metal oxide MoO3 belt is synthesized and characterized with X‐ray diffraction, scanning electron microscopy, and Raman spectroscopy. Charge‐transfer‐(CT) enhanced Raman scattering of 4‐mercaptobenzoic acid (4‐MBA) on a 1D MoO3 belt was investigated experimentally and theoretically. The chemical enhancement of surface‐enhanced Raman scattering (SERS) of 4‐MBA on the MoO3 belt by CT is in the order of 103. The SERS of 4‐MBA was investigated theoretically by using a quantum chemical method. The remote SERS of 4‐MBA along the 1D MoO3 belt (the light excitation to one side of the MoO3 belt, and the SERS spectrum is collected on the other side of the MoO3 belt) is also shown experimentally, which provides potential applications of SERS. The incident polarization dependence of remote SERS spectra has also been investigated experimentally.  相似文献   

5.
The separation of 1,3‐butadiene from C4 hydrocarbon mixtures is imperative for the production of synthetic rubbers, and there is a need for a more economical separation method, such as a pressure swing adsorption process. With regard to adsorbents that enable C4 gas separation, [Zn(NO2ip)(dpe)]n (SD‐65; NO2ip=5‐nitroisophthalate, dpe=1,2‐di(4‐pyridyl)ethylene) is a promising porous material because of its structural flexibility and restricted voids, which provide unique guest‐responsive accommodation. The 1,3‐butadiene‐selective sorption profile of SD‐65 was elucidated by adsorption isotherms, in situ PXRD, and SSNMR studies and was further investigated by multigas separation and adsorption–desorption‐cycle experiments for its application to separation technology.  相似文献   

6.
The repeating guest units of poly‐(R)‐ 2 were selectively encapsulated by the self‐assembled capsule poly‐ 1 possessing eight polymer side chains to form the supramolecular graft polymer (poly‐ 1 )n?poly‐(R)‐ 2 . The encapsulation of the guest units was confirmed by 1H NMR spectroscopy and the DOSY technique. The hydrodynamic radius of the graft polymer structure was greatly increased upon the complexation of poly‐ 1 . The supramolecular graft polymer (poly‐ 1 )n?poly‐(R)‐ 2 was stably formed in the 1:1 host–guest ratio, which increased the glass transition temperature by more than 10 °C compared to that of poly‐ 1 . AFM visualized that (poly‐ 1 )n?poly‐(R)‐ 2 formed the networked structure on mica. The (poly‐ 1 )n?poly‐(R)‐ 2 gelled in 1,1,2,2‐tetrachloroethane, which led to fabrication of distinct viscoelastic materials that demonstrated self‐healing behavior in a tensile test.  相似文献   

7.
The charge scaling effect in ionic liquids was explored on the basis of experimental and theoretical charge‐density analyses of [C1MIM][C1SO4] employing the quantum theory of atoms in molecules (QTAIM) approach. Integrated QTAIM charges of the experimental (calculated) charge density of the cation and anion resulted in non‐integer values of ±0.90 (±0.87) e. Efficient charge transfer along the bond paths of the hydrogen bonds between the imidazolium ring and the anion was considered as the origin of these reduced charges. In addition, a detailed QTAIM analysis of the bonding situation in the [C1SO4]? anion revealed the presence of negative πO→σ*S‐O hyperconjugation.  相似文献   

8.
Macroscopic pH‐responsive self‐assembly is successfully constructed by polyacrylamide(pAAm)‐based gels carrying dansyl (Dns) and β‐cyclodextrin (βCD) residues, which are represented as Dns‐gel and βCD‐gel, respectively. Dns‐gel and βCD‐gel assemble together at pH ≥ 4.0, but disassemble at pH ≤ 3.0. The adhesion strengths for pairs of Dns‐gel/βCD‐gel increase with increasing pH. The fluorescence study on the model system of pAAm modified with 1 mol% Dns moieties (pAAm/Dns) reveals that Dns residues are protonated at a lower pH, which results in the reduction in binding constant (K) for Dns residues and βCD.

  相似文献   


9.
Size‐controlled and ordered assemblies of artificial nanotubes are promising for practical applications; however, the supramolecular assembly of such systems remains challenging. A novel strategy is proposed that can be used to reinforce intermolecular noncovalent interactions to construct hierarchical supramolecular structures with fixed sizes and long‐range ordering by introducing ionic terminals and fully rigid arms into benzene‐1,3,5‐tricarboxamide (BTA) molecules. A series of similar BTA molecules with distinct terminal groups and arm lengths are synthesized; all form hexagonal bundles of helical rosette nanotubes spontaneously in water. Despite differences in molecular packing, the dimensions and bundling of the supramolecular nanotubes show almost identical concentration dependence for all molecules. The similarities of the hierarchical assemblies, which tolerate certain molecular irregularities, can extend to properties such as the void ratio of the nanotubular wall. This is a rational strategy that can be used to achieve supramolecular nanotubes in aqueous environments with precise size and ordering at the same time as allowing molecular modifications for functionality.  相似文献   

10.
《Chemphyschem》2004,5(2):202-208
We have designed and synthesized a series of Schiff base derivatives, and studied their structural features in two‐dimensional (2D) and three‐dimensional (3D) states by combining scanning tunneling microscopy (STM) and X‐ray diffraction experiments. The Schiff‐base derivatives with short alkyl chains crystallize easily, which allows a detailed structural analysis by X‐ray diffraction. Due to the strong adsorbate–substrate interactions, those bases with long alkyl chains easily form 2D assemblies on highly oriented pyrolytic graphite (HOPG). The STM images indicate also that the introduction of two methoxy groups into the molecule can change the structure of these 2D assemblies as a result of the increased steric hindrances, for example: the Schiff‐base derivative, bearing both methoxy groups and C16H33 tails, forms 2D Moiré patterns, and an alignment of pairing Schiff‐base molecules may be easily resolved. Conversely, the Schiff base derivative, bearing solely C16H33 tails, forms 2D non‐Moiré patterns. It is demonstrated that the 3D structural features result from the compromise of intermolecular interactions of different molecular moieties. However, there is one more factor, which also governs the 2D structure: the adsorbate‐substrate interaction. The 3D crystal structure may thus help to understand many factors involved in the formation of 2D structures, and would be helpful for designing new molecular assemblies with tailoring functions.  相似文献   

11.
Responsive supramolecular gels were constructed from crown ether terminated four‐arm star poly(ε‐caprolactone) (PCL–DB24C8) and dibenzylammonium‐terminated two‐arm PCL–DBAS (see scheme), exploiting the formation of pseudorotaxane linkages between crown ether and ammonium moieties. The resultant supramolecular gels exhibit thermo‐ and pH‐induced reversible gel–sol transition.

  相似文献   


12.
13.
Easy access to a class of chiral gelators has been achieved by exploiting primary ammonium monocarboxylate ( PAM ), a supramolecular synthon. A combinatorial library comprising of 16 salts, derived from 5 l ‐amino acid methyl esters and 4 cinnamic acid derivatives, has been prepared and scanned for gelation. Remarkably, 14 out of 16 salts prepared (87.5 % of the salts) show moderate to good gelation abilities with various solvents, including commercial fuels, such as petrol. Anti‐solvent induced instant gelation at room temperature has been achieved in all the gelator salts, indicating that the gelation process is indeed an aborted crystallization phenomenon. Rheology, optical and scanning electron microscopy, small angle neutron scattering, and X‐ray powder diffraction have been used to characterize the gels. A structure‐property correlation has been attempted, based on these data, in addition to the single‐crystal structures of 5 gelator salts. Analysis of the FT‐IR and 1H NMR spectroscopy data reveals that some of these salts can be used as supramolecular containers for the slow release of certain pest sex pheromones. The present study clearly demonstrates the merit of crystal engineering and the supramolecular synthon approach in designing new materials with multiple properties.  相似文献   

14.
To achieve unique molecular‐recognition patterns, a rational control of the flexibility of porous coordination polymers (PCPs) is highly sought, but it remains elusive. From a thermodynamic perspective, the competitive relationship between the structural deformation energy (Edef) of soft PCPs and the guest interaction is key for selective a guest‐triggered structural‐transformation behavior. Therefore, it is vital to investigate and control Edef to regulate this competition for flexibility control. Driven by these theoretical insights, we demonstrate an Edef‐modulation strategy via encoding inter‐framework hydrogen bonds into a soft PCP with an interpenetrated structure. As a proof of this concept, the enhanced Edef of PCP enables a selective gate‐opening behavior toward CHCl3 over CH2Cl2 by changing the adsorption‐energy landscape of the compounds. This study provides a new direction for the design of functional soft porous materials.  相似文献   

15.
16.
The first coordination compound of 1,4‐dihydro‐2,3‐quinoxalinedione in ketoamine tautomeric form (denoted as H2qdione) was reported. H2qdione was obtained by a solid‐state reaction of o‐phenylenediamine and oxalic acid. Reaction of this ligand with CdCl2 solvothermally yielded a coordination polymer [Cd(H2qdione)Cl2]n, which was structurally characterized by X‐ray diffraction and IR spectroscopy. Continuous Cd2Cl2 diamonds form a double‐sided comb with terminal H2qdione‐κ2O,O′ as the comb teeth. Interaction of these combs through very extensive π–π stacking, C–H ··· Cl, and N–H ··· Cl hydrogen bonds leads to a novel 3D architecture and significant enhancement of solid‐state luminescence of about 10 times compared to the free H2qdione ligand.  相似文献   

17.
A polyoxometalate‐based molecular triangle has been synthesized through the metal‐driven self‐assembly of covalent organic/inorganic hybrid oxo‐clusters with remote pyridyl binding sites. The new metallomacrocycle was unambiguously characterized by using a combination of 1H NMR spectroscopy, 2D diffusion NMR spectroscopy (DOSY), electrospray ionization travelling wave ion mobility mass spectrometry (ESI‐TWIM‐MS), small‐angle X‐ray scattering (SAXS) and molecular modelling. The collision cross‐sections obtained from TWIM‐MS and the hydrodynamic radii derived from DOSY are in good agreement with the geometry‐optimized structures obtained by using theoretical calculations. Furthermore, SAXS was successfully employed and proved to be a powerful technique for characterizing such large supramolecular assemblies.  相似文献   

18.
Polygon‐like [2+2]‐ and [3+3]‐type metal complexes were prepared from dipyrrin dimers connected by acute‐angled spacers. The electrical conduction depends strongly on the packing alignment of the compounds, revealing the presence of effective hopping pathways for holes with relatively high mobility up to 0.11 cm2 V?1 s?1 along the aligned axis of [3+3]‐type metal‐bridged assemblies. These observations correlated with the geometrical control of the π‐conjugated metal complexes in the cyclic structures, which enables their ordered arrangement in the assemblies.  相似文献   

19.
Temperature‐constant and pressure‐constant molecular dynamics simulations of crystalline 1,4‐linked poly(cyclohexa‐1,3‐diene) (CHD) were performed using the COMPASS force field. Powder X‐ray diffraction spectra calculated from the simulated atomic coordinates were compared with the measured spectrum of the crystal of 1,4‐linked poly(CHD), obtained using a bis(allylnickel bromide) (ANiBr)/methylaluminoxane (MAO) catalyst. As a result of the comparison, the geometrical isomerism of the 1,4‐linked poly(CHD) obtained with the ANiBr/MAO catalyst was found to be cis syndiotactic. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 973–978, 2001  相似文献   

20.
Modular cyclodiphosph(V)azanes are synthesised and their affinity for chloride and actetate anions were compared to those of a bisaryl urea derivative ( 1 ). The diamidocyclodiphosph(V)azanes cis‐[{ArNHP(O)(μ‐tBu)}2] [Ar=Ph ( 2 ) and Ar=m‐(CF3)2Ph ( 3 )] were synthesised by reaction of [{ClP(μ‐NtBu)}2] ( 4 ) with the respective anilines and subsequent oxidation with H2O2. Phosphazanes 2 and 3 were obtained as the cis isomers and were characterised by multinuclear NMR spectroscopy, FTIR spectroscopy, HRMS and single‐crystal X‐ray diffraction. The cyclodiphosphazanes 2 and 3 readily co‐crystallise with donor solvents such as MeOH, EtOH and DMSO through bidentate hydrogen bonding, as shown in the X‐ray analyses. Cyclodiphosphazane 3 showed a remarkably high affinity (log[K]=5.42) for chloride compared with the bisaryl urea derivative 1 (log[K]=4.25). The affinities for acetate (AcO?) are in the same range ( 3 : log[K]=6.72, 1 : log[K]=6.91). Cyclodiphosphazane 2 , which does not contain CF3 groups, exhibits weaker binding to chloride (log[K]=3.95) and acetate (log[K]=4.49). DFT computations and X‐ray analyses indicate that a squaramide‐like hydrogen‐bond directionality and Cα?H interactions account for the efficiency of 3 as an anion receptor. The Cα?H groups stabilise the Z,Z‐ 3 conformation, which is necessary for bidentate hydrogen bonding, as well as coordinating with the anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号