首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron‐driven proton transfer (EDPT) in Watson–Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine–cytosine (G?C) Watson–Crick base pairs by ultrafast time‐resolved UV/visible and mid‐infrared spectroscopy. The formation of an intermediate biradical species (G[?H]?C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G?C Watson–Crick pairs, but up to 10 % of the initially excited molecules instead form a stable photoproduct G*?C* that has undergone double hydrogen‐atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA.  相似文献   

2.
The oligonucleotide d(TX)9, which consists of an octadecamer sequence with alternating non‐canonical 7‐deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double‐stranded DNA through the formation of hydrogen‐bonded Watson–Crick base pairs. dsDNA with metal‐mediated base pairs was then obtained by selectively replacing W‐C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag+ ions, and its stability is significantly enhanced in the presence of Ag+ ions while its double‐helix structure is retained. Temperature‐dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)‐mediated base pairs. This strategy could become useful for preparing stable metallo‐DNA‐based nanostructures.  相似文献   

3.
We have designed and synthesised a double‐headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson–Crick base pairs with two complementary adenosines in a Watson–Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double‐headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double‐headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B‐type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double‐headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.  相似文献   

4.
The first parallel‐stranded DNA duplex with Hoogsteen base pairing that readily incorporates an Ag+ ion into an internal mispair to form a metal‐mediated base pair has been created. Towards this end, the highly stabilizing 6 FP ‐Ag+‐ 6 FP base pair comprising the artificial nucleobase 6‐furylpurine ( 6 FP ) was devised. A combination of temperature‐dependent UV spectroscopy, CD spectroscopy, and DFT calculations was used to confirm the formation of this base pair. The nucleobase 6 FP is capable of forming metal‐mediated base pairs both by the Watson–Crick edge (i.e. in regular antiparallel‐stranded DNA) and by the Hoogsteen edge (i.e. in parallel‐stranded DNA), depending on the oligonucleotide sequence and the experimental conditions. The 6 FP ‐Ag+‐ 6 FP base pair within parallel‐stranded DNA is the most strongly stabilizing Ag+‐mediated base pair reported to date for any type of nucleic acid, with an increase in melting temperature of almost 15 °C upon the binding of one Ag+ ion.  相似文献   

5.
Reverse Watson–Crick DNA with parallel‐strand orientation (ps DNA) has been constructed. Pyrrolo‐dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3‐d]pyrimidine base have been incorporated in 12‐ and 25‐mer oligonucleotide duplexes and utilized as silver‐ion binding sites. Thermal‐stability studies on the parallel DNA strands demonstrated extremely strong silver‐ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single 2pyPyrdC–2pyPyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver‐ion base pair that aligns 7‐deazapurine bases head‐to‐tail instead of head‐to‐head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson–Crick base pairs stabilized by a dinuclear silver‐mediated PyrdC pair.  相似文献   

6.
In the present study, we demonstrate single‐molecule imaging of triple helix formation in DNA nanostructures. The binding of the single‐molecule third strand to double‐stranded DNA in a DNA origami frame was examined using two different types of triplet base pairs. The target DNA strand and the third strand were incorporated into the DNA frame, and the binding of the third strand was controlled by the formation of Watson–Crick base pairing. Triple helix formation was monitored by observing the structural changes in the incorporated DNA strands. It was also examined using a photocaged third strand wherein the binding of the third strand was directly observed using high‐speed atomic force microscopy during photoirradiation. We found that the binding of the third strand could be controlled by regulating duplex formation and the uncaging of the photocaged strands in the designed nanospace.  相似文献   

7.
The molecular electrostatic potential of the triple helix poly(dT)·tpoly(dA)·poly(dT) is calculated, and the results are examined in relation to those obtained for its component double and single helical parts. For the double helix presenting the standard Watson–Crick hydrogen bonds, the deepest potentials are formed on the side of the major groove, a situation similar to that observed in the A-DNA duplex. For the double helix presenting Hoogsteen-type hydrogen bonds the deepest potentials lie in the major groove, on the side of the pyrimidine strand. In the triple helix the deepest potentials are located in the major groove in a narrow zone over the thymine bases of the Watson–Crick pair.  相似文献   

8.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐S‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures.  相似文献   

9.
10.
11.
Janus bases are heterocyclic nucleic acid base analogs that present two different faces able to simultaneously hydrogen bond to nucleosides that form Watson–Crick base pairs. The synthesis of a Janus‐AT nucleotide analogue, N JAT , that has an additional endocyclic ring nitrogen and is thus more capable of efficiently discriminating T/A over G/C bases when base‐pairing in a standard duplex‐DNA context is described. Conversion to a phosphoramidite ultimately afforded incorporation into an oligonucleotide. In contrast to the first generation of carbocyclic Janus heterocycles, it remains in its unprotonated state at physiological pH and, therefore, forms very stable Watson–Crick base pairs with either A or T bases. Biophysical and computational methods indicate that N JAT is an improved candidate for sequence‐specific genome targeting.  相似文献   

12.
Pseudo‐complementary peptide nucleic acid (pcPNA), as one of the most widely used synthetic DNA analogues, invades double‐stranded DNA according to Watson–Crick rules to form invasion complexes. This unique mode of DNA recognition induces structural changes at the invasion site and can be used for a range of applications. In this paper, pcPNA is conjugated with a nuclear localization signal (NLS) peptide, and its invading activity is notably promoted both thermodynamically and kinetically. Thus, the double‐duplex invasion complex is formed promptly at low pcPNA concentrations under high salt conditions, where the invasion otherwise never occurs. Furthermore, NLS‐modified pcPNA is successfully employed for site‐selective DNA scission, and the targeted DNA is selectively cleaved under conditions that are not conducive for DNA cutters using unmodified pcPNAs. This strategy of pcPNA modification is expected to be advantageous and promising for a range of in vitro and in vivo applications.  相似文献   

13.
The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV‐induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine–thymine double‐stranded structures (AT)n. Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time‐dependent (TD)‐DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine‐to‐thymine charge‐transfer states. Emission from such high‐energy long‐lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π–π* states (≥0.1). An increase in the size of the system quenches π–π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π–π* and charge‐transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n: high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π–π* states, giving rise to delayed fluorescence.  相似文献   

14.
A more elaborate sequence‐independent triple‐helix formation viability study was carried out and extended from a recombination‐like triple‐helical DNA motif of a previous study (J. Mol. Recognition 14, 122–139 (2001)). The intended triple‐helix was formed by mixing one part of a DNA hairpin duplex and one part of a single (or third) strand identical to one of the duplex strands and complementary to the other strand. In contrast to the common purine and pyrimidine motifs in triple‐stranded DNA, the strands of the recombination‐like motif are not monotonously built from pyrimidine only, or purine only, in the sequence. The stability of the recombination‐like motif triplexes with varying sequences was monitored by UV thermal melting curves. The results showed that the order of the stability of the R‐form DNA base triads (J. Mol. Biol., 239, 181–200 (1994)) is G*(G ○ C) > C*(C ○ G) > A*(A ○ T) >T*(T ○ A) (the Watson‐Crick base pair is denoted in the parentheses) in 200 mM NaCl, at pH 7. In an attempt to increase the stability of the triplex in the recombination‐like motif, we replaced cytidine by 5‐methylcytidine (mC) of the third strand. There is a general trend that mC modification stabilizes the complex (<2 °C per mC). The complex is furthermore stabilized by Mg2+ ion. The Tm increases from 7 to 2 °C from less stable to highly stable triplex by 20 mM Mg2+ ion in solution.  相似文献   

15.
The emergence of unnatural DNA bases provides opportunities to demystify the mechanisms by which DNA polymerases faithfully decode chemical information on the template. It was previously shown that two unnatural cytosine bases (termed “M‐fC” and “I‐fC”), which are chemical labeling adducts of the epigenetic base 5‐formylcytosine, can induce C‐to‐T transition during DNA amplification. However, how DNA polymerases recognize such unnatural cytosine bases remains enigmatic. Herein, crystal structures of unnatural cytosine bases pairing to dA/dG in the KlenTaq polymerase‐host–guest complex system and pairing to dATP in the KlenTaq polymerase active site were determined. Both M‐fC and I‐fC base pair with dA/dATP, but not with dG, in a Watson–Crick geometry. This study reveals that the formation of the Watson–Crick geometry, which may be enabled by the A‐rule, is important for the recognition of unnatural cytosines.  相似文献   

16.
The suggestion that phosphorus/arsenic replacement in DNA can play a role in living things has generated great controversy (Wolfe‐Simon et al., Science 2011, 332, 1163). Examined here theoretically are substitution effects on Watson–Crick base pairing and base stacking patterns in realistic DNA subunits. Using duplex DNA models deoxyguanylyl‐3′,5′‐deoxycytidine ([dGpdC]2) and deoxycytidyly‐3′,5′‐deoxyguanosine ([dCpdG)]2), this research reveals that the geometric variations caused by the As/P exchange are small and are limited to the phosphate/arsenate groups. As/P replacement leads to alterations of ~0.15 Å in P/As? O bond lengths and less than 1.5° variations in O? P/As? O angles. The Watson–Crick base pairing and base stacking patterns are independent of the As/P replacement. The vertical electron detachment energies are also largely unaffected. However, the electron capture ability of the DNA units is improved by the As substitution. The arsenate is found to be the main electron acceptor in As‐DNA. The results are relevant to the possible existence of viable As‐DNAs, at least in the guanine and cytosine (GC)‐related B‐form DNA. © 2012 Wiley Periodicals, Inc. J Comput Chem, 2012  相似文献   

17.
Programming self‐assembled designer DNA crystals with various lattices and functions is one of the most important goals for nanofabrication using nucleic acids. The resulting porous materials possess atomic precision for several potential applications that rely on crystalline lattices and cavities. Herein, we present a rationally designed and self‐assembled 3D DNA crystal lattice with hexagonal symmetry. In our design, two 21‐base oligonucleotides are used to form a duplex motif that further assembles into a 3D array. The interactions between the strands are programmed using Watson–Crick base‐pairing. The six‐fold symmetry, as well as the chirality, is directed by the Holliday junctions formed between the duplex motifs. The rationally designed DNA crystal provides a new avenue that could create self‐assembled macromolecular 3D crystalline lattices with atomic precision. In addition, the structure contains a highly organized array of well‐defined cavities that are suitable for future applications with immobilized guests.  相似文献   

18.
The Watson–Crick coding system depends on the molecular recognition of complementary purine and pyrimidine bases. Now, the construction of hybrid DNAs with Watson–Crick and purine–purine base pairs decorated with dendritic side chains was performed. Oligonucleotides with single and multiple incorporations of 5-aza-7-deaza-2′-deoxyguanosine, its tripropargylamine derivative, and 2′-deoxyisoguanosine were synthesized. Duplex stability decreased if single modified purine–purine base pairs were inserted, but increased if pyrene residues were introduced by click chemistry. A growing number of consecutive 5-aza-7-deazaguanine–isoguanine base pairs led to strong stepwise duplex stabilization, a phenomenon not observed for the guanine–isoguanine base pair. Spacious residues are well accommodated in the large groove of purine–purine DNA tracts. Changes to the global helical structure monitored by circular dichroism spectroscopy show the impact of functionalization to the global double-helix structure. This study explores new areas of molecular recognition realized by purine base pairs that are complementary in hydrogen bonding, but not in size, relative to canonical pairs.  相似文献   

19.
The current work aims to thoroughly investigate a variety of facets of the hydrogen‐bond pattern of the Watson–Crick A · T base pair of DNA. It offers a novel mechanism of the origin of the hydrogen‐bonded mispairing in the A · T base pair based on the analysis of the lower‐energy portion of the total potential energy surface of all possible rearrangements of the hydrogen‐bond patterns in this pair, performed at the Hartree–Fock (HF), second‐order Moller–Plesset (MP2)//HF, and B3LYP computational levels in conjunction with 6‐31+G(d) basis set. The specific novelty of this mechanism is that the primary step consists of a single proton transfer along the N3(T)–H … N1 (A) hydrogen bond, thus leading to a transition state that is not directly related to the proton transfer. Rather, it governs the interbase shift within the A · T pair switching the hydrogen‐bonded pattern and then separating the normal A · T pair from the mispairing valley on its potential energy surface. The latter comprises three mismatched base pairs, easily converted to each other because of lower barriers (≈1 kcal/mol) of the corresponding proton transfers. It is demonstrated that, in terms of the Gibbs free energy taken at room T = 298.15 K, the most stable mispair in such valley is predicted to be less stable by 9.7 ± 2 kcal/mol than the Watson–Crick pair, thus implying that the spontaneous point mutations of this type occur as infrequently as to be characterized by an equilibrium constant of 10?6 to 10?9. This estimate falls into the well‐known experimental range of mutation frequency per base pair. The structure of a so‐called “base flipping” of the A · T base pair, originated from a breaking of its N3(T)‐H … N1 (A) hydrogen bond, is also found and reported in the current work for the first time. The transition state A · T ts WC?H , which governs the conversion of the Watson–Crick pair of adenine · thymine into the Hoogsteen one and is related to a breaking of the N6(A)–H … O4(T), is also obtained and its energetical and geometrical features are discussed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

20.
Numerous applications of metal‐mediated base pairs (metallo‐base‐pairs) to nucleic acid based nanodevices and genetic code expansion have been extensively studied. Many of these metallo‐base‐pairs are formed in DNA and RNA duplexes containing Watson–Crick base pairs. Recently, a crystal structure of a metal–DNA nanowire with an uninterrupted one‐dimensional silver array was reported. We now report the crystal structure of a novel DNA helical wire containing HgII‐mediated T:T and T:G base pairs and water‐mediated C:C base pairs. The Hg‐DNA wire does not contain any Watson–Crick base pairs. Crystals of the Hg‐DNA wire, which is the first DNA wire structure driven by HgII ions, were obtained by mixing the short oligonucleotide d(TTTGC) and HgII ions. This study demonstrates the potential of metallo‐DNA to form various structural components that can be used for functional nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号