首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] with Mn‐containing starting materials result in seven novel polynuclear Ce or Ce/Mn complexes with pivalato (tBuCO ) and, in most cases, auxiliary N,O‐ or N,O,O‐donor ligands. With nuclearities ranging from 6–14, the compounds present aesthetically pleasing structures. Complexes [CeIV6(μ3‐O)4(μ3‐OH)4(μ‐O2CtBu)12] ( 1 ), [CeIV6MnIII4(μ4‐O)4(μ3‐O)4(O2CtBu)12(ea)4(OAc)4]?4 H2O?4 MeCN (ea?=2‐aminoethanolato; 2 ), [CeIV6MnIII8(μ4‐O)4(μ3‐O)8(pye)4(O2CtBu)18]2[CeIV6(μ3‐O)4(μ3‐OH)4(O2CtBu)10(NO3)4] [CeIII(NO3)5(H2O)]?21 MeCN (pye?=pyridine‐2‐ethanolato; 3 ), and [CeIV6CeIII2MnIII2(μ4‐O)4(μ3‐O)4(tbdea)2(O2CtBu)12(NO3)2(OAc)2]?4 CH2Cl2 (tbdea2?=2,2′‐(tert‐butylimino]bis[ethanolato]; 4 ) all contain structures based on an octahedral {CeIV6(μ3‐O)8} core, in which many of the O‐atoms are either protonated to give (μ3‐OH)? hydroxo ligands or coordinate to further metal centers (MnIII or CeIII) to give interstitial (μ4‐O)2? oxo bridges. The decanuclear complex [CeIV8CeIIIMnIII(μ4‐O)3(μ3‐O)3(μ3‐OH)2(μ‐OH)(bdea)4(O2CtBu)9.5(NO3)3.5(OAc)2]?1.5 MeCN (bdea2?=2,2′‐(butylimino]bis[ethanolato]; 5 ) contains a rather compact CeIV7 core with the CeIII and MnIII centers well‐separated from each other on the periphery. The aggregate in [CeIV4MnIV2(μ3‐O)4(bdea)2(O2CtBu)10(NO3)2]?4 MeCN ( 6 ) is based on a quasi‐planar {MnIV2CeIV4(μ3‐O)4} core made up of four edge‐sharing {MnIVCeIV2(μ3‐O)} or {CeIV3(μ3‐O)} triangles. The structure of [CeIV3MnIV4MnIII(μ4‐O)2(μ3‐O)7(O2CtBu)12(NO3)(furan)]?6 H2O ( 7 ?6 H2O) can be considered as {MnIV2CeIV2O4} and distorted {MnIV2MnIIICeIVO4} cubane units linked through a central (μ4‐O) bridge. The Ce6Mn8 equals the highest nuclearity yet reported for a heterometallic Ce/Mn aggregate. In contrast to most of the previously reported heterometallic Ce/Mn systems, which contain only CeIV and either MnIV or MnIII, some of the aggregates presented here show mixed valency, either MnIV/MnIII (see 7 ) or CeIV/CeIII (see 4 and 5 ). Interestingly, some of the compounds, including the heterovalent CeIV/CeIII 4 , could be obtained from either CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] as starting material.  相似文献   

2.
From the viewpoints of large capacity, long‐term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal‐substituted ?‐Fe2O3, ?‐GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ?‐Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single‐ion anisotropy on CoII (S=3/2) along the c‐axis. The saturation magnetization was increased by 44 % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal‐to‐noise ratio compared to the currently used magnetic tape.  相似文献   

3.
The title dinuclear di‐μ‐oxo‐bis­[(1,4,8,11‐tetra­aza­cyclo­tetra­decane‐κ4N)­manganese(III,IV)] diperchlorate nitrate complex, [Mn2O2(C10H24N4)2](ClO4)2(NO3) or [(cyclam)Mn­O]2(ClO4)2(NO3), was self‐assembled by the reaction of Mn2+ with 1,4,8,11‐tetra­aza­cyclo­tetra­decane in aqueous media. The structure of this compound consists of a centrosymmetric binuclear [(cyclam)MnO]3+ unit, two perchlorate anions and one nitrate anion. While the low‐temperature electron paramagnetic resonance spectra show a typical 16‐line signal for a di‐μ‐oxo MnIII/MnIV dimer, the magnetic susceptibility studies also confirm a characteristic antiferromagnetic coupling between the electronic spins of the MnIV and MnIII ions.  相似文献   

4.
The solid‐state structure of the title compound, [Na2Mn2(C32H56N2OSi2)2O2] or [1,8‐C10H6(NSiiPr3)2Mn(μ3‐O)Na(THF)]2, which lies across a crystallographic twofold axis, exhibits a central [Mn2O2Na2]4+ core, with two oxide groups, each triply bridging between the two MnIII ions and an Na+ ion. Additional coordination is provided to each MnIII centre by a 1,8‐C10H6(NSiiPr3)2 [1,8‐bis(triisopropylsilylamido)naphthalene] ligand and to the Na+ centres by a tetrahydrofuran molecule. The presence of an additional Na...H—C agostic interaction potentially contributes to the distortion around the bridging oxide group.  相似文献   

5.
Under hydrothermal conditions, replacement of the water molecules in the [MnIII4MnII2O4(H2O)4]8+ cluster of mixed‐valent Mn6 sandwiched silicotungstate [(B‐α‐SiW9O34)2MnIII4MnII2O4(H2O)4]12? ( 1 a ) with organic N ligands led to the isolation of five organic–inorganic hybrid, Mn6‐substituted polyoxometalates (POMs) 2 – 6 . They were all structurally characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, diffuse‐reflectance spectroscopy, and powder and single‐crystal X‐ray diffraction. Compounds 2 – 6 represent the first series of mixed‐valent {MnIII4MnII2O4(H2O)4?n(L)n} sandwiched POMs covalently functionalized by organic ligands. The preparation of 1 – 6 not only indicates that the double‐cubane {MnIII4MnII2O4(H2O)4?n(L)n} clusters are very stable fragments in both conventional aqueous solution and hydrothermal systems and that organic functionalization of the [MnIII4MnII2O4(H2O)4]8+ cluster by substitution reactions is feasible, but also demonstrates that hydrothermal environments can promote and facilitate the occurrence of this substitution reaction. This work confirms that hydrothermal synthesis is effective for making novel mixed‐valent POMs substituted with transition‐metal (TM) clusters by combining lacunary Keggin precursors with TM cations and tunable organic ligands. Furthermore, magnetic measurements reveal that 3 and 6 exhibit single‐molecule magnet behavior.  相似文献   

6.
The electronic structures of the five members of the electron transfer series [Mo(bpy)3]n (n=3+, 2+, 1+, 0, 1?) are determined through a combination of techniques: electro‐ and magnetochemistry, UV/Vis and EPR spectroscopies, and X‐ray crystallography. The mono‐ and dication are prepared and isolated as PF6 salts for the first time. It is shown that all species contain a central MoIII ion (4d3). The successive one‐electron reductions/oxidations within the series are all ligand‐based, involving neutral (bpy0), the π‐radical anion (bpy.)1?, and the diamagnetic dianion (bpy2?)2?: [MoIII(bpy0)3]3+ (S=3/2), [MoIII(bpy.)(bpy0)2]2+ (S=1), [MoIII(bpy.)2(bpy0)]1+ (S=1/2), [MoIII(bpy.)3] (S=0), and [MoIII(bpy.)2(bpy2?)]1? (S=1/2). The previously described diamagnetic dication “[MoII(bpy0)3](BF4)2” is proposed to be a diamagnetic dinuclear species [{Mo(bpy)3}22‐O)](BF4)4. Two new polynuclear complexes are prepared and structurally characterized: [{MoIIICl(Mebpy0)2}22‐O)]Cl2 and [{MoIV(tpy.)2}22‐MoVIO4)](PF6)2?4 MeCN.  相似文献   

7.
Transition metal (TM)‐based bimetallic spinel oxides can efficiently activate peroxymonosulfate (PMS) presumably attributed to enhanced electron transfer between TMs, but the existing model cannot fully explain the efficient TM redox cycling. Here, we discover a critical role of TM?O covalency in governing the intrinsic catalytic activity of Co3?xMnxO4 spinel oxides. Experimental and theoretical analysis reveals that the Co sites significantly raises the Mn valence and enlarges Mn?O covalency in octahedral configuration, thereby lowering the charge transfer energy to favor MnOh–PMS interaction. With appropriate MnIV/MnIII ratio to balance PMS adsorption and MnIV reduction, the Co1.1Mn1.9O4 exhibits remarkable catalytic activities for PMS activation and pollutant degradation, outperforming all the reported TM spinel oxides. The improved understandings on the origins of spinel oxides activity for PMS activation may inspire the development of more active and robust metal oxide catalysts.  相似文献   

8.
In acetate buffer media (pH 4.5–5.4) thiosulfate ion (S2O32?) reduces the bridged superoxo complex, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]4+ ( 1 ) to its corresponding μ‐peroxo product, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]3+ ( 2 ) and along a parallel reaction path, simultaneously S2O32? reacts with 1 to produce the substituted μ‐thiosulfato‐μ‐superoxo complex, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]3+ ( 3 ). The formation of μ‐thiosulfato‐μ‐superoxo complex ( 3 ) appears as a precipitate which on being subjected to FTIR shows absorption peaks that support the presence of Co(III)‐bound S‐coordinated S2O32? group. In reaction media, 3 readily dissolves to further react with S2O32? to produce μ‐thiosulfato‐μ‐peroxo product, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]2+ ( 4 ). The observed rate (k0) increases with an increase in [TThio] ([TThio] is the analytical concentration of S2O32?) and temperature (T), but it decreases with an increase in [H+] and the ionic strength (I). Analysis of the log At versus time data (A is the absorbance of 1 at time t) reveals that overall the reaction follows a biphasic consecutive reaction path with rate constants k1 and k2 and the change of absorbance is equal to {a1 exp(–k1t) + a2 exp(–k2t)}, where k1 > k2.  相似文献   

9.
Reactions of nonheme FeIII–superoxo and MnIV–peroxo complexes bearing a common tetraamido macrocyclic ligand (TAML), namely [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2?, with nitric oxide (NO) afford the FeIII–NO3 complex [(TAML)FeIII(NO3)]2? and the MnV–oxo complex [(TAML)MnV(O)]? plus NO2?, respectively. Mechanistic studies, including density functional theory (DFT) calculations, reveal that MIII–peroxynitrite (M=Fe and Mn) species, generated in the reactions of [(TAML)FeIII(O2)]2? and [(TAML)MnIV(O2)]2? with NO, are converted into MIV(O) and .NO2 species through O?O bond homolysis of the peroxynitrite ligand. Then, a rebound of FeIV(O) with .NO2 affords [(TAML)FeIII(NO3)]2?, whereas electron transfer from MnIV(O) to .NO2 yields [(TAML)MnV(O)]? plus NO2?.  相似文献   

10.
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two‐color valence‐to‐core X‐ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2‐activating, radical‐initiating manganese–iron heterodinuclear cofactor in a class I‐c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two‐color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIVFeIV and MnIVFeIII states of the enzyme to be assigned as MnIV(μ‐O)2FeIV and MnIV(μ‐O)(μ‐OH)FeIII, respectively.  相似文献   

11.
Ribonucleotide reductases (RNRs) are essential enzymes required for DNA synthesis. In class Ib Mn2 RNRs superoxide (O2.?) was postulated to react with the MnII2 core to yield a MnIIMnIII‐peroxide moiety. The reactivity of complex 1 ([MnII2(O2CCH3)2(BPMP)](ClO4), where HBPMP=2,6‐bis{[(bis(2‐pyridylmethyl)amino]methyl}‐4‐methylphenol) towards O2.? was investigated at ?90 °C, generating a metastable species, 2 . The electronic absorption spectrum of 2 displayed features (λmax=440, 590 nm) characteristic of a MnIIMnIII‐peroxide species, representing just the second example of such. Electron paramagnetic resonance and X‐ray absorption spectroscopies, and mass spectrometry supported the formulation of 2 as a MnIIMnIII‐peroxide complex. Unlike all other previously reported Mn2‐peroxides, which were unreactive, 2 proved to be a capable oxidant in aldehyde deformylation. Our studies provide insight into the mechanism of O2‐activation in Class Ib Mn2 RNRs, and the highly reactive intermediates in their catalytic cycle.  相似文献   

12.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

13.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes of macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,8,11‐tetraazacyclotetradecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,7,10‐tetraazacyclododecane) with thiosulfate has been carried out by spectrophotometry in aqueous buffer at 30°C. Reaction between complex 1 and thiosulfate follows a first‐order rate saturation kinetics. The pH dependency and kinetic evidences suggest the participation of two complex species of MnIII(μ‐O)2MnIV under the experimental conditions. Detailed kinetic study shows that reduction of 2 proceeds through an autocatalytic path where the intermediate (MnIII)2 species has been assumed to catalyze the reaction. The difference in the reaction mechanisms is ascribed to the difference in stability of the intermediate complex species, the evidence for which comes from the electrochemical behavior of the complexes and time dependent EPR spectroscopic measurements during the reduction of 2 . © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 119–128, 2004  相似文献   

14.
Four new oxo‐centered MnIII‐salicylaldoximate triangle‐based extended complexes [MnIII6O2(salox)6(EtOH)4(phda)]n?(saloxH2)n?(2H2O)n ( 1 ), [MnIII6O2(salox)6(MeOH)5(5‐I‐isoph)]n?(3 MeOH)n ( 2 ), [MnIII6O2(salox)6(MeOH)4(H2O) (5‐N3‐isoph)]n?(4 MeOH)n ( 3 ) and [MnIII3NaO(salox)3(MeOH)4(5‐NO2‐isoph)]n?(MeOH)n (H2O)n ( 4 ) [salox=salicylaldoximate, phda=1,3‐phenylenediacetate, isoph=isophthalate] have been synthesized under similar reaction conditions. Single crystal X‐ray structures show that in 1 , only one type of Mn6 cluster is arranged in 1 D, whereas in 2 and 3 there are two types of clusters, differing in the way the triangle units are joined and assembled. In complex 4 , however, the basic building structure is heteronuclear and based on Mn3 units extended in 2 D. Susceptibility measurements (dc and ac) over a wide range of temperatures and fields show that the complexes 1 , 2 , and 3 behave as single molecule magnets (SMMs) with S=4 ground state, while 4 is dominantly antiferromagnetic with a ground spin state S=2. Density functional theory calculations have been performed on model complexes to provide a qualitative theoretical interpretation for their overall magnetic behavior.  相似文献   

15.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes with macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,7,10‐tetraazacyclododecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,8,11‐tetraazacyclotetradecane) with 2‐mercaptoethanol (RSH) has been carried out by spectrophotometry in aqueous buffer at (30 ± 0.1)°C. Rate of the reactions between the oxidants and the reductant was found to be negligibly slow with no systematic dependence on either redox partners. Externally added copper(II) (usually 5 × 10?7 mol dm?3), however, increases the rate of the reduction of 1 and 2 significantly. In the presence of catalytic amount of copper(II), the rate of the reaction is nearly proportional to [RSH] at lower concentration of the reductant but follows a saturation kinetics at higher concentration of the latter for the reaction between 1 and the thiol. Reaction rate was found to be strongly influenced by the variation of acidity of the medium and the observed kinetics suggests that the two reductant species ([Cu(RSH)]2+ and [Cu(RS)]+) are significant for the reaction between 1 and the thiol. The dependence of the rate on [RSH] for the reduction of 2 by the thiol was complex and rationalized considering two equilibria involving the catalyst (Cu2+) and the reductant. The pH rate profile suggests that both the μ‐O protonated [MnIII(O)(OH)MnIV] and the deprotonated [MnIII(O)2MnIV] forms of the oxidant 2 become important. The kinetic results presented in this study indicate the domination of outer‐sphere path. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 129–137, 2004  相似文献   

16.
This study deals with the unprecedented reactivity of dinuclear non‐heme MnII–thiolate complexes with O2, which dependent on the protonation state of the initial MnII dimer selectively generates either a di‐μ‐oxo or μ‐oxo‐μ‐hydroxo MnIV complex. Both dimers have been characterized by different techniques including single‐crystal X‐ray diffraction and mass spectrometry. Oxygenation reactions carried out with labeled 18O2 unambiguously show that the oxygen atoms present in the MnIV dimers originate from O2. Based on experimental observations and DFT calculations, evidence is provided that these MnIV species comproportionate with a MnII precursor to yield μ‐oxo and/or μ‐hydroxo MnIII dimers. Our work highlights the delicate balance of reaction conditions to control the synthesis of non‐heme high‐valent μ‐oxo and μ‐hydroxo Mn species from MnII precursors and O2.  相似文献   

17.
A biomimetic sensor containing the oxo‐bridged dinuclear manganese‐phenanthroline complex incorporated into a cation‐exchange polymeric film deposited onto glassy carbon electrode for detection of sulfite was studied. Cyclic voltammetry at the modified electrode in universal buffer showed a two electron oxidation/reduction of the couple MnIV(μ‐O)2MnIV/MnIII(μ‐O)2MnIII. The sensor exhibited electrocatalytic property toward sulfite oxidation with a decrease of the overpotential of 450 mV compared with the glassy carbon electrode. A plot of the anodic current versus the sulfite concentration for potential fixed (+0.15 V vs. SCE) at the sensor was linear in the 4.99×10?7 to 2.49×10?6 mol L?1 concentration range and the concentration limit was 1.33×10?7 mol L?1. The mediated mechanism was derived by Michaelis? Menten kinetics. The calculated kinetics values were Michaelis? Menten rate constant= =1.33 µmol L?1, catalytic rate constant=6.06×10?3 s?1 and heterogeneous electro‐chemical rate constant=3.61×10?5 cm s?1.  相似文献   

18.
Kinetic studies on the oxidation of 2‐mercaptosuccinic acid by dinuclear [Mn2III/IV(μ‐O)2(cyclam)2](ClO4)3] ( 1 ) (abbreviated as MnIII–MnIV) (cyclam = 1,4,8,11‐tetraaza‐cyclotetradecane) have been carried out in aqueous medium in the pH range of 4.0–6.0, in the presence of acetate buffer at 30°C by UV–vis spectrophotometry. In the pH region, two species of complex 1 (MnIII–MnIV and MnIII–MnIVH, the later being μ‐O protonated form) were found to be kinetically significant. The first‐order dependence of the rate of the reactions on [Thiol] both in presence and absence of externally added copper(II) ions, first‐order dependence on [Cu2+] and a decrease of rate of the reactions with increase in pH have been rationalized by suitable sequence of reactions. Protonation of μ‐O bridge of 1 is evidenced by the perchloric acid catalyzed decomposition of 1 to mononuclear Mn(III) and Mn(IV) complex observed by UV–vis and EPR spectroscopy. The kinetic features have been rationalized considering Cu(RSH) as the reactive intermediate. EPR spectroscopy lends support for this. The formation of a hydrogen bonded outer‐sphere adduct between the reductant and the complex in the lower pH range prior to electron transfer reactions is most likely to occur. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 170–177 2004  相似文献   

19.
Density functional theory (DFT) studies have been undertaken to compute the magnetic exchange and to probe the origin of the magnetic interactions in two hetero‐ and two homo‐valent heptanuclear manganese disc‐like clusters, of formula [MnII4MnIV3(tea)(teaH2)3(peolH)4] ( 1 ), [MnII4MnIII3F3(tea)(teaH)(teaH2)2(piv)4(Hpiv)(chp)3] ( 2 ), [MnII7(pppd)6(tea)(OH)3] ( 3 ) and [MnII7 (paa)6(OMe)6] ( 4 ) (teaH3=triethanolamine, peolH4=pentaerythritol, Hpiv=pivalic acid, Hchp=6‐chloro‐2‐hydroxypyridine, pppd=1‐phenyl‐3‐(2‐pyridyl) propane‐1,3‐dione; paaH=N‐(2‐pyridinyl)acetoacetamide). DFT calculations yield J values, which reproduce the magnetic susceptibility data very well for all four complexes; these studies are also highlighting the likely ageing/stability problems in two of the complexes. It is found that the spin ground states, S, for complexes 1 – 4 are drastically different, varying from S=29/2 to S=1/2. These values are found to be controlled by the nature of the oxidation state of the metal ions and minor differences present in the structures. Extensive magneto–structural correlations are developed for the seven building unit dimers present in the complexes, with the correlations unlocking the reasons behind the differences in the magnetic properties observed. Independent of the oxidation state of the metal ions, the Mn‐O‐Mn/Mn‐F‐Mn angles are found to be the key parameters, which significantly influence the sign as well as the magnitude of the J values. The magneto–structural correlations developed here, have broad applicability and can be utilised to understand the magnetic properties of other Mn clusters.  相似文献   

20.
The crystal structure of the low‐spin (S = 1) MnIII complex [Mn(CN)2(C10H24N4)]ClO4, or trans‐[Mn(CN)2(cyclam)](ClO4) (cyclam is the tetradentate amine ligand 1,4,8,11‐tetra­aza­cyclo­tetra­decane), is reported. The structural parameters in the Mn(cyclam) moiety are found to be insensitive to both the spin and the oxidation state of the Mn ion. The difference between high‐ and low‐spin MnIII complexes is that a pronounced tetragonal elongation of the coordination octahedron occurs in high‐spin complexes and a slight tetragonal compression is seen in low‐spin complexes, as in the title complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号