首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hemichelation is emerging as a new mode of coordination where non‐covalent interactions crucially contribute to the cohesion of electron‐unsaturated organometallic complexes. This study discloses an unprecedented demonstration of this concept to a Group 9 metal, that is, RhI. The syntheses of new 14‐electron RhI complexes were achieved by choosing the anti‐[(η66‐fluorenyl){Cr(CO)3}2] anion as the ambiphilic hemichelating ligand, which was treated with [{Rh(nbd)Cl}2] (nbd=norbornadiene) and [{Rh(CO)2Cl}2]. The new T‐shaped RhI hemichelates were characterized by analytical and structural methods. Investigations using the methods of the DFT and electron‐density topology analysis (NCI region analysis, QTAIM theory) confirmed the closed‐shell, non‐covalent and attractive characters of the interaction between the RhI center and the proximal Cr(CO)3 moiety. This study shows that, by appropriate tuning of the electronic properties of the ambiphilic ligand, truly coordination‐unsaturated RhI complexes can be synthesized in a manageable form.  相似文献   

2.
The efficient RhI‐catalyzed cycloisomerization of benzylallene‐alkynes produced the tricyclo[9.4.0.03,8]pentadecapentaene skeleton through a C? H bond activation in good yields. A plausible reaction mechanism proceeds via oxidative addition of the acetylenic C? H bond to RhI, an ene‐type cyclization to the vinylidenecarbene–RhI intermediate, and an electrophilic aromatic substitution with the vinylidenecarbene species. It was proposed based on deuteration and competition experiments.  相似文献   

3.
An efficient visible light induced rhodium(I)‐catalyzed regioselective borylation of aromatic C?H bonds is reported. The photocatalytic system is based on a single NHC?RhI complex capable of both harvesting visible light and enabling the bond breaking/forming at room temperature. The chelating nature of the NHC‐carboxylate ligand was critical to ensure the stability of the RhI complex and to provide excellent photocatalytic activities. Experimental mechanistic studies evidenced a photooxidative ortho C?H bond addition upon irradiation with blue LEDs, leading to a cyclometalated RhIII‐hydride intermediate.  相似文献   

4.
A RhI‐catalyzed three‐component reaction of tert‐propargyl alcohol, diazoester, and alkyl halide has been developed. This reaction can be considered as a carbene‐involving sequential alkyl and alkynyl coupling, in which C(sp)? C(sp3) and C(sp3)? C(sp3) bonds are built successively on the carbenic carbon atom. The RhI‐carbene migratory insertion of an alkynyl moiety and subsequent alkylation are proposed to account for the two separate C? C bond formations. This reaction provides an efficient and tunable method for the construction of all‐carbon quaternary center.  相似文献   

5.
An enantioselective rhodium(I)‐catalyzed cycloisomerization reaction of challenging (E)‐1,6‐enynes is reported. This novel process enables (E)‐1,6‐enynes with a wide range of functionalities, including nitrogen‐, oxygen‐, and carbon‐tethered (E)‐1,6‐enynes, to undergo cycloisomerization with excellent enantioselectivity, in a high‐yielding and operationally simple manner. Moreover, this RhI‐diphosphane catalytic system also exhibited superior reactivity and enantioselectivity for (Z)‐1,6‐enynes. A rationale for the striking reactivity difference between (E)‐ and (Z)‐1,6‐enynes using RhI‐BINAP and RhI‐TangPhos is outlined using DFT studies to provide the necessary insight for the design of new catalyst systems and the application to synthesis.  相似文献   

6.
Mechanochemical activations in RhIII‐ and AuI‐catalyzed C?H alkynylations lead selectively to C2‐ and C3‐alkynylated indoles. The processes show excellent functional group tolerance, do not require additional heating and proceed under solventless conditions. Compared to solvent‐based standard protocols, the reaction times are shorter and the catalyst quantities lower resulting in high product yields under ambient atmosphere in mixer mills.  相似文献   

7.
By using the hybrid IMOMM(B3LYP:MM3) method, we examined the binap–RhI‐catalyzed oxidative‐addition and insertion steps of the asymmetric hydrogenation of the enamide 2‐acetylamino‐3‐phenylacrylic acid. We report a path that is energetically more favorable for the major enantiomer than for the minor enantiomer. This path follows the “lock‐and‐key” motif and leads to the major enantiomeric product via an energetically favorable binap–dihydride–RhIII–enamide complex. Our theoretical results are consistent with the mechanism that takes place via RhIII dihydride formation, that is, oxidative addition of H2 followed by enamide insertion.  相似文献   

8.
This Minireview details the current state‐of‐the‐art relating to (co)polymerizations mediated by well‐defined RhI‐ethynyl, vinyl, and aryl complexes. In particular, we focus on RhI species suitable for the (co)polymerization of phenylacetylenes, arylisocyanides, as well as propargyl esters and amides.  相似文献   

9.
α‐Halo and pseudohalo ketones are used for the first time as C(sp3)‐based electrophiles in transition‐metal‐catalyzed C? H activation and as oxidized alkyne equivalents in RhIII‐catalyzed redox‐neutral annulations to generate diverse N‐heterocycles. This transformation is efficient and scalable. Due to the mild reaction conditions, a variety of functional groups could be tolerated.  相似文献   

10.
The synthesis of the reactive PN(CH) ligand 2‐di(tert‐butylphosphanomethyl)‐6‐phenylpyridine ( 1H ) and its versatile coordination to a RhI center is described. Facile C?H activation occurs in the presence of a (internal) base, thus resulting in the new cyclometalated complex [RhI(CO)(κ3P,N,C‐ 1 )] ( 3 ), which has been structurally characterized. The resulting tridentate ligand framework was experimentally and computationally shown to display dual‐site proton‐responsive reactivity, including reversible cyclometalation. This feature was probed by selective H/D exchange with [D1]formic acid. The addition of HBF4 to 3 leads to rapid net protonolysis of the Rh?C bond to produce [RhI(CO)(κ3P,N,(C?H)‐ 1 )] ( 4 ). This species features a rare aryl C?H agostic interaction in the solid state, as shown by X‐ray diffraction studies. The nature of this interaction was also studied computationally. Reaction of 3 with methyl iodide results in rapid and selective ortho‐methylation of the phenyl ring, thus generating [RhI(CO)(κ2P,N‐ 1Me )] ( 5 ). Variable‐temperature NMR spectroscopy indicates the involvement of a RhIII intermediate through formal oxidative addition to give trans‐[RhIII(CH3)(CO)(I)(κ3P,N,C‐ 1 )] prior to C?C reductive elimination. The RhIIItrans‐diiodide complex [RhI(CO)(I)23P,N,C‐ 1 )] ( 6 ) has been structurally characterized as a model compound for this elusive intermediate.  相似文献   

11.
The mechanism of the [(Cp*MCl2)2] (M=Rh, Ir)‐catalyzed oxidative annulation reaction of isoquinolones with alkynes was investigated in detail. In the first acetate‐assisted C? H‐activation process (cyclometalated step) and the subsequent mono‐alkyne insertion into the M? C bonds of the cyclometalated compounds, both Rh and Ir complexes participated well. However, the desired final products, dibenzo[a,g]quinolizin‐8‐one derivatives, were only formed in high yield when the Rh species participated in the final oxidative coupling of the C? N bond. Moreover, a RhI sandwich intermediate was isolated during this transformation. The iridium complexes were found to be inactive in the oxidative coupling processes. All of the relevant intermediates were fully characterized and determined by single‐crystal X‐ray diffraction analysis. Based on this mechanistic study, a RhIII→RhI→RhIII catalytic cycle was proposed for this reaction.  相似文献   

12.
Rhodium(I) complexes bearing N‐heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of these organometallics. A series of RhI‐NHC derivatives with 1,5‐cyclooctadiene and CO as secondary ligands were synthesized, characterized, and biologically investigated as prospective antitumor drug candidates. Pronounced antiproliferative effects were noted for all complexes, along with moderate inhibitory activity of thioredoxin reductase (TrxR) and efficient binding to biomolecules (DNA, albumin). Biodistribution studies showed that the presence of albumin lowered the cellular uptake and confirmed the transport of rhodium into the nuclei. Changes in the mitochondrial membrane potential (MMP) were observed as well as DNA fragmentation in wild‐type and daunorubicin‐ or vincristine‐resistant Nalm‐6 leukemia cells. Overall, these studies indicated that RhI‐NHC fragments could be used as partial structures of new antitumor agents, in particular in those drugs designed to address resistant malignant tissues.  相似文献   

13.
1,3‐N,O‐chelated complexes of RhI and IrI cooperatively and reversibly stabilized the B?H bond of HBCy2 to afford six‐membered metallaheterocycles (M=Rh ( 7 ) or Ir ( 8 )) having a δ‐[M]???H‐B agostic interaction. Treatment of these Shimoi‐type borane adducts 7 or 8 with both an aldehyde and an alkene resulted in chemoselective aldehyde hydroboration and reformation of the 1,3‐N,O‐chelated starting material. The observed chemoselectivity is inverted from that of free HBCy2, which is selective for alkene hydroboration.  相似文献   

14.
A chiral CpxRhIII catalyst system in situ generated from a CpxRhI(cod) precatalyst and bis(o‐toluoyl) peroxide as activating oxidant was developed for a C?H activation/ring‐opening sequence between aryl ketoxime ethers and 2,3‐diazabicyclo[2.2.1]hept‐5‐enes. This transformation provides access to densely functionalized chiral cyclopentenylamines in excellent yields and enantioselectivities of up to 97:3 er. The reported method is also well suitable for asymmetric alkenyl C?H functionalizations of α,β‐unsaturated oxime ethers, furnishing skipped dienes with high levels of enantiocontrol.  相似文献   

15.
The water‐soluble phosphine ligands, 1,3,5‐triaza‐7‐phosphatricyclo[3.3.1.13,7]decane (tpa) and 1‐alkyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodides (Rtpa+I), with alkyl=methyl(mtpa+I), ethyl (etpa+I) and n‐propyl, (ptpa+I), and mtpa+Cl react with [Rh2Cl2(CO)4] giving the rhodium(I) complexes [RhCl(CO)(tpa)2], [RhI(CO)(Rtpa+I)2], [RhCl‐­(CO)(mtpa+Cl)3] and [RhI(CO)(Rtpa+I)3]. The properties and reactivities of the complexes have been investigated using 1H and 31PNMR and IR spectroscopies. The five‐coordinate complexes in solutions show dynamic properties. The complexes are catalysts of the water‐gas shift reaction, the hydrogenation of CC and CO bonds, the hydroformylation of alkenes and the isomerization of unsaturated compounds. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
An unprecedented dearomatized spirocyclopropane intermediate was discovered in a sequential Cp*RhIII‐catalyzed C?H activation and Wagner–Meerwein‐type rearrangement reaction. How the oxidative O?N bond is cleaved and the role of HOAc were uncovered in this study. Furthermore, a Cp*RhIII‐catalyzed dearomatization reaction of N‐(naphthalen‐1‐yloxy)acetamide with strained olefins was developed, affording a variety of spirocyclopropanes.  相似文献   

17.
A RhIII complex featuring an electron‐deficient η5‐cyclopentadienyl ligand catalyzed an unusual annulation between alkynes and 2‐alkenyl anilides to form synthetically appealing 2‐substituted indolines. Formally, the process can be viewed as an allylic amination with concomitant hydrocarbonation of the alkyne. Mechanistic experiments indicate that this transformation involves an unusual rhodium migration with a concomitant 1,5‐H shift.  相似文献   

18.
Reaction of [U{C(SiMe3)(PPh2)}(BIPM)(μ‐Cl)Li(TMEDA)(μ‐TMEDA)0.5]2 (BIPM=C(PPh2NSiMe3)2; TMEDA=Me2NCH2CH2NMe2) with [Rh(μ‐Cl)(COD)]2 (COD=cyclooctadiene) affords the heterotrimetallic UIV?RhI2 complex [U(Cl)2{C(PPh2NSiMe3)(PPh[C6H4]NSiMe3)}{Rh(COD)}{Rh(CH(SiMe3)(PPh2)}]. This complex has a very short uranium–rhodium distance, the shortest uranium–rhodium bond on record and the shortest actinide–transition metal bond in terms of formal shortness ratio. Quantum‐chemical calculations reveal a remarkable Rh UIV net double dative bond interaction, involving RhI 4d ‐ and 4dxy/xz‐type donation into vacant UIV 5f orbitals, resulting in a Wiberg/Nalewajski–Mrozek U?Rh bond order of 1.30/1.44, respectively. Despite being, formally, purely dative, the uranium–rhodium bonding interaction is the most substantial actinide–metal multiple bond yet prepared under conventional experimental conditions, as confirmed by structural, magnetic, and computational analyses.  相似文献   

19.
We describe transfer carbonylation reactions of 2‐bromoarenes that contain a carbon‐nucleophile using aldehydes as a substitute for CO, leading to the formation of indanone derivatives. The transformation proceeds efficiently under RhI/Pd0‐hybrid catalytic conditions consisting of two discrete transition metals, rhodium and palladium, which catalyze the decarbonylation of aldehydes and the subsequent carbonylation of bromoarenes using the resulting carbonyl moiety, respectively. The majority of the abstracted CO is transferred directly to the product via a CO‐relay process from rhodium to palladium.  相似文献   

20.
Reported is an achiral CpxRhIII/chiral carboxylic acid catalyzed asymmetric C?H alkylation of diarylmethanamines with a diazomalonate, followed by cyclization and decarboxylation to afford 1,4‐dihydroisoquinolin‐3(2H)‐one. Secondary alkylamines as well as nonprotected primary alkylamines underwent the transformation with high enantioselectivities (up to 98.5:1.5 e.r.) by using a newly developed chiral carboxylic acid as the sole source of chirality to achieve enantioselective C?H cleavage by a concerted metalation‐deprotonation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号