首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes’ diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low‐micromolar mixtures, thus reducing the concentration requirements by at least 100‐fold.  相似文献   

2.
NMR spectroscopy is an excellent tool for structural analysis of pure compounds. However, for mixtures, it performs poorly because of overlapping signals. Diffusion ordered NMR spectroscopy (DOSY) can be used to separate the spectra of compounds with widely differing molecular weights, but the separation is usually insufficient. NMR "chromatographic" methods have been developed to increase the diffusion separation but these usually introduced solids into the NMR sample that reduce resolution. Using nanostructured dispersed media, such as microemulsions, eliminates the need for suspensions of solids and brings NMR chromatography into the mainstream of NMR analytical techniques. DOSY was used in this study to resolve spectra of mixtures with no increase in line-width as compared to regular solutions. Components of a mixture are differentially dissolved into the separate phases of the microemulsions. Several examples of previously reported microemulsions and those specifically developed for this purpose were used here. These include a fully dilutable microemulsion, a fluorinated microemulsion, and a fully deuterated microemulsion. Log(diffusion) difference enhancements of up to 1.7 orders of magnitude were observed for compounds that have similar diffusion rates in conventional solvents. Examples of commercial pharmaceutical drugs were also analyzed via this new technique, and the spectra of up to six components were resolved from one sample.  相似文献   

3.
Diffusion-ordered spectroscopy (DOSY) is a powerful tool for investigating mixtures and identifying peaks of chemical components. However, similar diffusion coefficients of the components, particularly for complex mixtures that contain crowded resonances, limit resolution and restrict application of the DOSY technique. In this paper, matrix-assisted DOSY were used to explore whether the diffusion resolution of a complex model involving indole alkaloid mixtures can be realized. Furthermore, we investigated the influence of different factors on the separation effect. The results showed that the changes in diffusion coefficient differences were achieved more obviously when using sodium dodecyl sulfate (SDS) micelles as the matrix. In addition, we also found that increasing the concentration of SDS can improve the resolution of the DOSY spectrum. Finally, after investigating the influence factors and NMR conditions, we demonstrated the applications of the SDS-assisted DOSY on analyzing the total alkaloid extract of Alstonia Mairei, and the virtual separation of mixtures was achieved.  相似文献   

4.
Diffusion‐ordered spectroscopy (DOSY) is an effective method for the analysis of intact mixtures, but the quality of results is critically limited by resolution in the NMR dimension. A new experiment integrating diffusion weighting into the PSYCHE method for pure shift NMR spectroscopy allows DOSY spectra to be measured with ultrahigh NMR resolution at improved sensitivity.  相似文献   

5.
Diffusion‐ordered NMR spectroscopy resolves mixture components on the basis of differences in their respective diffusion coefficients or molecular sizes. However, when components have near‐identical diffusion coefficients, they are not resolved in the diffusion dimension of a diffusion‐ordered spectroscopy (DOSY) spectrum. Adding surfactant micelles to these mixtures has been shown to enhance resolution when the component molecules interact differentially with the micelles. This approach is similar to that used in electrokinetic chromatography (EKC) where modifiers like micelles or polymers are used to enhance the separation of mixture components. In this study, perdeuterated surfactants are added to analyte mixtures studied with the DOSY technique. Since no micelle resonances appear in the mixture spectra, the difficulty associated with performing biexponential analyses in spectral regions where analyte and surfactant resonances overlap is avoided. The approach is demonstrated using mixtures of peptides with near‐identical diffusion coefficients. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
State-of-the-art technologies and methodologies in NMR spectroscopy make it possible to obtain very informative and high-quality spectra in much less experimental time than classical methods by making better choices of NMR pulse sequences and acquisition parameters. This review presents some recent NMR methods allowing rapid identification, assignment and structural characterization of the components in mixtures. The relative merits of the different NMR pulse sequences are briefly discussed and recommendations are made for the preferred choice of sequences to obtain rapidly artifact-free data. This review covers diffusion experiments (DOSY), HSQC and HMBC experiments, ultra-resolved 2D spectra exploiting the property of aliasing and NOESY/ROESY experiments. It will be in particular shown that selective 1D NOESY/ROESY sequences can be more informative and reach higher resolution in less experimental time than the corresponding 2D sequences.  相似文献   

7.
New metallomacrocycles composed of 2,2':6',2″-terpyridine (tpy) ligands and Ru(II) or Fe(II) transition metal ions were prepared by stepwise directed assembly and characterized by 2D diffusion NMR spectroscopy (DOSY), electrospray ionization traveling wave ion mobility mass spectrometry (ESI TWIM MS), and molecular modeling. The supramolecular polymers synthesized include a homonuclear all-Ru hexamer as well as heteronuclear hexamer and nonamer with alternating Ru/Ru/Fe metal centers. ESI MS yields several charge states from each supramacromolecule. If ESI is interfaced with TWIM MS, overlapping charge states and the isomeric components of an individual charge state are separated based on their unique drift times through the TWIM region. From experimentally measured drift times, collision cross-sections can be deduced. The collision cross-sections obtained for the synthesized supramacromolecules are in good agreement with those predicted by molecular modeling for macrocyclic structures. Similarly, the hydrodynamic radii of the synthesized complexes derived from 2D DOSY NMR experiments agree excellently with the radii calculated for macrocyclic architectures, confirming the ESI TWIM MS finding. ESI TWIM MS and 2D DOSY NMR spectroscopy provide an alternative approach for the structural analysis of supramolecules that are difficult or impossible to crystallize, such as the large macrocyclic assemblies investigated. ESI TWIM MS will be particularly valuable for the characterization of supramolecular assemblies not available in the quantity or purity required for NMR studies.  相似文献   

8.
Diffusion‐ordered spectroscopy (DOSY) is an important technique for separating the NMR signals of the components in a mixture, and relies on differences in diffusion coefficient. Standard DOSY experiments therefore struggle when the components of a mixture are of similar size, and hence diffuse at similar rates. Fortunately, the diffusion coefficients of solutes can be manipulated by changing the matrix in which they diffuse, using matrix components that interact differentially with them, a technique known as matrix‐assisted DOSY. In the present investigation, we evaluate the performance of a number of new, previously used, and mixed matrices with an informative test mixture: the three positional isomers of dihydroxybenzene. The aim of this work is to present the matrix‐assisted DOSY user with information about the potential utility of a set of matrices (and combinations of matrices), including ionic and non‐ionic surfactants, complexing agents, polymers, and mixed solvents. A variety of matrices improved the diffusion resolution of the signals of the test system, with the best separation achieved by mixed micelles of sodium dodecyl sulfate and cetyl trimethylammonium bromide. The use of mixed matrices offers great potential for the analyst to tailor the matrix to a particular sample under study. © 2016 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons, Ltd.  相似文献   

9.
The preparation of hierarchically structured organosilicon microcapsules from commercially available starting materials is described. Using a microfluidic device, an emulsion of dichlorodiphenylsilane is formed in a continuous phase of aqueous glycerol. The silane droplets undergo hydrolysis, condensation, and crystallization within minutes to form self-assembled, core-shell microcapsules. The microparticles have been characterized with light and electron microscopy, nuclear magnetic resonance spectroscopy (NMR), diffusion-ordered NMR spectroscopy (DOSY), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD). The characterization data show that the microcapsule walls consist of amorphous, oligomeric poly(diphenylsiloxane) surrounded by a spiny layer of crystalline diphenylsilanediol. Glycerol is occluded within the wall material but is not covalently bound to the silicon components. Glycerol is a crucial element for producing low-dispersity microcapsules with well-ordered surface spines, as the use of methyl cellulose as viscomodifier yields amorphous surfaces.  相似文献   

10.
The formation of silicate nanoaggregates (NAs) at the very early stages of precursor sols and zeolite beta crystallization from silicate nanoparticles (NPs) are investigated in detail using a combination of different analysis methods, including liquid‐state 29Si, 27Al, 14N, and 1H NMR spectroscopy, mass spectrometry (MS), small‐angle X‐ray scattering (SAXS), X‐ray diffraction (XRD), and transmission electron microscopy at cryogenic temperatures (cryo‐TEM). Prior to hydrothermal treatment, silicate NAs are observed if the Si/OH ratio in the reaction mixture is greater than 1. Condensation of oligomers within the NAs then generates NPs. Aluminum doped into the synthesis mixtures is located exclusively in the NPs, and is found exclusively in a state that is fourfold connected to silicate, favoring their condensation and aggregation. These results are in agreement with general trends observed for other systems. Silicate NAs are essential intermediates for zeolite formation and are generated by the aggregation of hydrated oligomers, aluminate, and templating cations. Subsequent further intra‐nanoaggregate silicate condensation results in the formation of NPs. 1H and 14N liquid NMR as well as diffusion ordered spectroscopy (DOSY) experiments provide evidence for weakly restricted rotational and translational mobility of the organic template within NAs as a consequence of specific silicate–template interactions. NAs thus appear as key species in clear sols, and their presence in the precursor sol favors silicate condensation and further crystallization, promoted either by increasing the Si/OH ratio or by heating.  相似文献   

11.
Diffusion-ordered spectroscopy (DOSY) NMR is based on a pulse-field gradient spin-echo NMR experiment, in which components experience diffusion. Consequently, the signal of each component decays with different diffusion rates as the gradient strength increases, constructing a bilinear NMR data set of a mixture. By calculating the diffusion coefficient for each component, it is possible to obtain a two-dimensional NMR spectrum: one dimension is for the conventional chemical shift and the other for the diffusion coefficient. The most interesting point is that this two-dimensional NMR allows non-invasive “chromatography” to obtain the pure spectrum for each component, providing a possible alternative for LC-NMR that is more expensive and time-consuming. Potential applications of DOSY NMR include identification of the components and impurities in complex mixtures, such as body fluids, or reaction mixtures, and technical or commercial products, e.g. comprising polymers or surfactants.

Data processing is the most important step to interpret DOSY NMR. Single channel methods and multivariate methods have been proposed for the data processing but all of them have difficulties when applied to real-world cases. The big challenge appears when dealing with more complex samples, e.g. components with small differences in diffusion coefficients, or severely overlapping in the chemical shift dimension. Two single channel methods, including SPLMOD and continuous diffusion coefficient (CONTIN), and two multivariate methods, called direct exponential curve resolution algorithm (DECRA) and multivariate curve resolution (MCR), are critically evaluated by simulated and real DOSY data sets. The assessments in this paper indicate the possible improvement of the DOSY data processing by applying iterative principal component analysis (IPCA) followed by MCR-alternating least square (MCR-ALS).  相似文献   


12.
NMR analysis of complex mixtures can be significantly simplified using polyethyleneglycol (PEG) as resolving additive in DOSY NMR technique, which allows the extraction of individual spectra of mixture components with differing polarity. Resolving power of PEG‐assisted DOSY was demonstrated with natural product mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
FT-IR, DSC, and NMR techniques allowed the structural characterization of four copolymers formed by styrene and methacrylic units (methacrylic acid (MAA), dimethylamine ethyl methacrylate (DMAEMA), sodium methacrylate (MANa), and 1-hydroxyethyl methacrylate (HEMA). The copolymer composition was studied by Fourier transform-infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The thermal behavior of the block copolymers was analyzed by differential scanning calorimetry (DSC). Three of the four copolymers showed two transitions caused by changes in the polymer heat capacity (ΔCp) of each block. Diffusion-ordered spectroscopy (DOSY) experiments were used to distinguish copolymer from homopolymer mixtures. Finally, the triad-level stereosequences of styrene-methacrylic copolymers were obtained using 13C NMR. The results indicate that by increasing the alkyl-substituent length in the methacrylic block, the probability of syndiotactic polymerization increases.  相似文献   

14.
Diffusion-ordered spectroscopy (DOSY) is an important tool in NMR mixture analysis that has found use in most areas of chemistry, including organic synthesis, drug discovery, and supramolecular chemistry. Typically the aim is to disentangle the overlaid, and often overlapped, NMR spectra of individual mixture components and/or to obtain size and interaction information from their respective diffusion coefficients. The most common processing method, high-resolution DOSY, breaks down where component spectra overlap; here multivariate methods can be very effective, but only for small numbers (2-5) of components. In this study, we present a hybrid method, local covariance order DOSY (LOCODOSY), that breaks a spectral data set into suitable windows and analyzes each individually before combining the results. This approach uses a multivariate algorithm (e.g., SCORE or DECRA) to resolve only a small number of components in any given window. Because a small spectral region should contain signals from only a few components, even when the spectrum as a whole contains many more, the total number of resolvable chemical components rises dramatically. It is demonstrated here that complete resolution of component spectra can be achieved for mixtures that are much more complex than could previously be analyzed with DOSY. Thus, LOCODOSY is a powerful, flexible tool for processing NMR diffusion data of complex mixtures.  相似文献   

15.
The synthesis and characterization by size exclusion chromatography, liquid chromatography, NMR, matrix‐assisted laser desorption/ionization, thermal analysis, and other techniques of well‐defined and narrow molecular weight distribution macrocyclic polystyrene (PS), poly(2‐vinylpyridine), poly(α‐methylstyrene), poly (2‐vinyl‐naphthalene) (P2VN), and poly(9,9‐dimethyl‐2‐vinylfluorene) (PDMVF) containing a single 1,4‐benzylidene, methylidene, or 9,10‐anthracenylidene unit are reviewed. The absorption and emission spectroscopy of PS, P2VN, and PDMVF is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2139–2155, 2006  相似文献   

16.
The dimeric structure is characterized for a chiral amide base complex consisting of an (S)-N-isopropyl-O-triisopropylsilyl valinol ligand and lithium. The complex is characterized by a variety of NMR techniques, including multinuclear one- and two-dimensional NMR experiments and diffusion-ordered NMR spectroscopy (DOSY) as well as diffusion coefficient-formula weight (D-fw) correlation analyses. Spartan calculations are presented which support the structural assignment. This structural characterization leads to an explanation of the behavior and the reactivity of these complexes in solution.  相似文献   

17.
High resolution diffusion-ordered NMR spectroscopy allows the separation of signals from different species based on their diffusion coefficients. In general this requires that the NMR spectra of the components do not have overlapping signals, and that the diffusion coefficients are significantly different. Modifying the solvent matrix in which a sample is dissolved can change the diffusion coefficients observed, allowing resolution ("matrix-assisted DOSY"). We show here that dissolving the two naturally-occurring epimers of naringin in an aqueous solution of β-cyclodextrin causes both shift and diffusion changes, allowing the signals of the epimers to be distinguished. Chiral matrix-assisted DOSY has the potential to allow simple resolution and assignment of the spectra of epimers and enantiomers, without the need for derivatisation or for titration with a shift reagent.  相似文献   

18.
A series of copper(I) alkylamide complexes have been synthesised; copper(I) dicyclohexylamide ( 1 ), copper(I) 2,2,6,6‐tetramethylpiperidide ( 2 ), copper(I) pyrrolidide ( 3 ), copper(I) piperidide ( 4 ), and copper(I) benzylamide ( 5 ). Their solid‐state structures and structures in [D6]benzene solution are characterised, with the aggregation state in solution determined by a combination of DOSY NMR spectroscopy and DFT calculations. Complexes 1 , 2 and 4 are shown to exist as tetramers in the solid state by X‐ray crystallography. In [D6]benzene solution, complexes 1 , 2 and 5 were found by using 1H DOSY NMR to exist in rapid equilibrium between aggregates with average aggregation numbers of 2.5, 2.4 and 3.3, respectively, at 0.05 M concentration. Conversely, distinct trimeric, tetrameric and pentameric forms of 3 and 4 were distinguishable by one‐dimensional 1H and 1H DOSY NMR spectroscopy. Complexes 3 – 5 are found to react stoichiometrically with iodobenzene, in the presence or absence of 1,10‐phenanthroline as an ancillary ligand, to give arylamine products indicative of their role as potential intermediates in the modified Ullmann reaction. The role of phenanthroline has also been explored both in the stoichiometric reaction and in the catalytic Ullmann protocol.  相似文献   

19.
Microstructure and phase behavior of a semi‐interpenetrating polymer network consisting of 10% poly(ethylene oxide) and 90% crosslinked‐silicone have been studied using various 1H solid‐state NMR methods under fast magic angle spinning in combination with well‐known polymer characterization techniques. Both, 1H double‐quantum MAS NMR spectroscopy as well as NOESY MAS measurements indicate a mixing of the two components on a molecular level.  相似文献   

20.
Herein, we present the results obtained from our studies on supramolecular self‐assembly and molecular mobility of low‐molecular‐weight gelators (LMWGs) in organic solvents using pulsed field gradient (PFG) diffusion ordered spectroscopy (DOSY) NMR. A series of concentration‐dependent DOSY NMR experiments were performed on selected LMWGs to determine the critical gelation concentration (CGC) as well as to understand the behaviour of the gelator molecules in the gel state. In addition, variable‐temperature DOSY NMR experiments were performed to determine the gel‐to‐sol transition. The PFG NMR experiments performed as a function of gradient strength were further analyzed using monoexponential DOSY processing, and the results were compared with the automated Bayesian DOSY transformation to obtain 2D plots. Our results provide useful information on the stepwise self‐assembly of small molecules leading to gelation. We believe that the results obtained from these experiments are applicable in determining the CGC and gel melting temperatures of supramolecular gels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号