首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lactone motif is ubiquitous in natural products and pharmaceuticals. The Tishchenko disproportionation of two aldehydes, a carbonyl hydroacylation, is an efficient and atom‐economic access to lactones. However, these reaction types are limited to the transfer of a hydride to the accepting carbonyl group. The transfer of alkyl groups enabling the formation of C C bonds during the ester formation would be of significant interest. Reported herein is such asymmetric carbonyl carboacylation of aldehydes and ketones, thus affording complex bicyclic lactones in excellent enantioselectivities. The rhodium(I)‐catalyzed transformation is induced by an enantiotopic C C bond activation of a cyclobutanone and the formed rhodacyclic intermediate reacts with aldehyde or ketone groups to give highly functionalized lactones.  相似文献   

2.
The polarity reversal (umpolung) reaction is an invaluable tool for reversing the chemical reactivity of carbonyl and iminyl groups, which subsequent cross‐coupling reactions to form C?C bonds offers a unique perspective in synthetic planning and implementation. Reported herein is the first visible‐light‐induced polarity‐reversed allylation and intermolecular Michael addition reaction of aldehydes, ketones, and imines. This chemoselective reaction has broad substrate scope and the engagement of alkyl imines is reported for the first time. The mechanistic investigations indicate the formation of ketyl (or α‐aminoalkyl) radicals from single‐electron reduction, where the Hantzsch ester is crucial as the electron/proton donor and the activator.  相似文献   

3.
The tripeptide H‐d Pro‐Pro‐Asn‐NH2 is presented as a catalyst for asymmetric conjugate addition reactions of aldehydes to maleimide. The peptidic catalyst promotes the reaction between various aldehydes and unprotected maleimide with high stereoselectivities and yields. The obtained products were readily derivatized to the corresponding pyrrolidines, lactams, lactones, and peptide‐like compounds. 1H NMR spectroscopic, crystallographic, and computational investigations provided insight into the conformational properties of H‐d Pro‐Pro‐Asn‐NH2 and revealed the importance of hydrogen bonding between the peptide and maleimide for catalyzing the stereoselective C?C bond formation.  相似文献   

4.
Ketyl radical and amino radical anions, valuable reactive intermediates for C? C bond‐forming reactions, are accessible through a C?O/C?NR umpolung. However, their utilization in catalysis remains largely underdeveloped owing to the high reduction potential of carbonyl compounds and imines. In the context of photoredox catalysis, tertiary amines are commonly employed as sacrificial co‐reducing agents. Herein, an additional role of the amine is proposed, in which it is essential for the organocatalytic substrate activation. The combination of photoredox catalysis and carbonyl/imine activation enables the reductive coupling of aldehydes, ketones, and imines under mild reaction conditions.  相似文献   

5.
The photochemical reactions of 2‐acylphenyl methacrylates (= 2‐acylphenyl 2‐methylprop‐2‐enoates) 1 were investigated. Irradiation of 2‐acylphenyl methacrylates 1a – d in MeCN gave the tricyclic lactones 2a – d in good yields, together with a small amount of O CO bond cleavage product, the 2‐acylphenols 3a – d (Scheme 2, Table). The formation of the tricyclic lactones 2 probably follows a mechanism involving a 1,7‐diradical through ζ‐H abstraction (1,8‐H transfer) by the excited carbonyl O‐atom (Scheme 3). Irradiation of 2‐acylphenyl tiglate (= 2‐acylphenyl (2E)‐2‐methylbut‐2‐enoate) 1e and 2‐acylphenyl methacrylates 1g – i , substituted by a MeO group (δ‐H) at the 3,5‐positions of the phenyl group, also gave the tricyclic lactones 2e and 2g – i , but in low yields. On the other hand, no H‐abstraction products were observed on irridation of 2‐(ethoxycarbonyl)phenyl methacrylate 1f , of 2‐acylphenyl methacrylate 1j which is substituted by a Me group (γ‐H) at the 3,5‐positions of the phenyl group, and of 1k with an OH group at the 3‐position of the phenyl group.  相似文献   

6.
We describe transfer carbonylation reactions of 2‐bromoarenes that contain a carbon‐nucleophile using aldehydes as a substitute for CO, leading to the formation of indanone derivatives. The transformation proceeds efficiently under RhI/Pd0‐hybrid catalytic conditions consisting of two discrete transition metals, rhodium and palladium, which catalyze the decarbonylation of aldehydes and the subsequent carbonylation of bromoarenes using the resulting carbonyl moiety, respectively. The majority of the abstracted CO is transferred directly to the product via a CO‐relay process from rhodium to palladium.  相似文献   

7.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

8.
The polarity reversal (umpolung) reaction is an invaluable tool for reversing the chemical reactivity of carbonyl and iminyl groups, which subsequent cross‐coupling reactions to form C−C bonds offers a unique perspective in synthetic planning and implementation. Reported herein is the first visible‐light‐induced polarity‐reversed allylation and intermolecular Michael addition reaction of aldehydes, ketones, and imines. This chemoselective reaction has broad substrate scope and the engagement of alkyl imines is reported for the first time. The mechanistic investigations indicate the formation of ketyl (or α‐aminoalkyl) radicals from single‐electron reduction, where the Hantzsch ester is crucial as the electron/proton donor and the activator.  相似文献   

9.
The first metal‐free catalytic hydroboration of carbonyl derivatives has been developed in which a catalytic amount of 1,3,2‐diazaphospholene effectively promotes a hydroboration reaction of aliphatic and aromatic aldehydes and ketones. The reaction mechanism involves the cleavage of both the P? O bond of the alkoxyphosphine intermediate and the B? H bond of pinacolborane as well as the formation of P? H and B? O bonds. Thus, the reaction proceeds through a non‐metal σ‐bond metathesis. Kinetic and computational studies suggest that the σ‐bond metathesis occurred in a stepwise but nearly concerted manner.  相似文献   

10.
A highly stereoselective three‐component C(sp2)?H bond addition across alkene and polarized π‐bonds is reported for which CoIII catalysis was shown to be much more effective than RhIII. The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp2)?H bonds undergo the three‐component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five‐membered lactones. Additionally, the first asymmetric reactions with CoIII‐catalyzed C?H functionalization are demonstrated with three‐component C?H bond addition cascades employing N‐tert‐butanesulfinyl imines. These examples represent the first transition metal catalyzed C?H bond additions to N‐tert‐butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines.  相似文献   

11.
A highly efficient water‐tolerant, solid‐base catalyst for the self‐condensation of biomass‐derived methyl ketones to jet‐diesel fuel precursors was developed by grafting site‐isolated secondary amines on silica‐alumina supports. It is shown that apart from the nature and density of amine groups and the spatial separation of the acidic and basic sites, the acidity of the support material plays a critical role in defining the catalytic activity. It is also found that a combination of weakly acidic silanol/aluminol with secondary amine groups can mimic proline catalysts and are more effective in catalyzing the selective dimerization reaction than the combination of amines with organic acids. In situ FTIR measurements demonstrate that acidic groups activate methyl ketones through their carbonyl groups leading to a favorable C? C bond formation step involving an enamine intermediate. DFT analysis of the reaction pathway confirms that C? C bond formation is the rate‐limiting step.  相似文献   

12.
To expand the scope of meta ‐functionalization, a pyrimidine‐based template effective for the formation of β‐aryl aldehydes and ketones, using allyl alcohols, by meta ‐C−H activation of benzylsulfonyl esters is described. In addition, α,β‐unsaturated aldehydes were generated by in situ olefination and deprotection of allyl benzyl ethers. These new functionalizations at the meta ‐position of an arene have also been successfully implemented in benzylphosphonate, phenethyl carbonyl, and phenethylsulfonyl ester scaffolds. Key to these successful new functionalizations is the creation of an electropositive palladium center by accepting the electron cloud from the metal to the energetically low‐lying π‐orbitals of pyrimidine ring, and it favors coordination of allyl alcohol to the metal center.  相似文献   

13.
《Electroanalysis》2006,18(2):131-140
Reduction of carbonyl group in aldehydes and ketones, as well as oxidation of numerous aldehydes is discussed, as well as those reductions of organic compounds where the C?O group activates cleavage of an adjacent C? X bond where X is a good leaving group like halogen, OH, NH2 or SR or activates hydrogenation of an adjacent C?C group. Survey involves aliphatic and aromatic aldehydes, aryl alkyl and diaryl ketones, as well as α‐ketoacids, 1,2‐diketones and compounds where the carbonyl group is a part of a ring. The role of acid–base, hydration–dehydration and in some cases keto–enol equilibria on electrochemical behavior is pointed out, as well as the role of buffer kind and concentration and the nature of the cation of supporting electrolyte. Better understanding of these factors promises finding of best conditions for electroanalytical procedures.  相似文献   

14.
Described is the first study on oxidative enantioselective α‐fluorination of simple aliphatic aldehydes enabled by N‐heterocyclic carbene catalysis. N‐fluorobis(phenyl)sulfonimide serves as a an oxidant and as an “F” source. The C? F bond formation occurs directly at the α position of simple aliphatic aldehydes, thus overcoming nontrivial challenges, such as competitive difluorination and nonfluorination, and proceeds with high to excellent enantioselectivities.  相似文献   

15.
Stoichiometric C?H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C?H transformations have not been developed. Herein, an iron‐catalyzed annulation of N?H imines and internal alkynes to furnish cis‐3,4‐dihydroisoquinolines is described, and represents the first iron‐carbonyl‐catalyzed C?H activation reaction of arenes. Remarkablely, this is also the first redox‐neutral [4+2] annulation of imines and alkynes proceeding by C?H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C?H bond activation to afford a dinuclear ferracycle and a synergetic diiron‐promoted H‐transfer to the alkyne as the turnover‐determining step.  相似文献   

16.
Previously unexplored enantiopure zwitterionic ammonium dienolates have been utilized in this work as reactive intermediates that act as diene components in hetero‐Diels–Alder reactions (HDAs) with aldehydes to produce optically active δ‐lactones, subunits of numerous bioactive products. The dienolates were generated in situ from E/Z mixtures of α,β‐unsaturated acid chlorides by use of a nucleophilic quinidine derivative and Sn(OTf)2 as co‐catalyst. The latter component was not directly involved in the cycloaddition step with aldehydes and simply facilitated the formation of the reactive dienolate species. The scope of the cycloaddition was considerably improved by use of a complex formed from Er(OTf)3 and a simple commercially available norephedrine‐derived ligand that tolerated a broad range of aromatic and heteroaromatic aldehydes for a cooperative bifunctional Lewis‐acid‐/Lewis‐base‐catalyzed reaction, providing α,β‐unsaturated δ‐lactones with excellent enantioselectivities. Mechanistic studies confirmed the formation of the dienolate intermediates for both catalytic systems. The active ErIII complex is most likely a monomeric species. Interestingly, all lanthanides can catalyze the title reaction, but the efficiency in terms of yield and enantioselectivity depends directly on the radius of the LnIII ion. Similarly, use of the pseudolanthanides ScIII and YIII also resulted in product formation, whereas the larger LaIII and other transition metal salts, as well as main group metal salts, proved to be inefficient. In addition, various synthetic transformations of 6‐CCl3‐ or 4‐silyl‐substituted α,β‐unsaturated δ‐lactones, giving access to a number of valuable δ‐lactone building blocks, were investigated.  相似文献   

17.
Monocarbonyl activation of 2,2‐disubstituted malonic acids with benzotriazole leads to decarboxylation of one of the carboxy groups and formation of a C?H bond. Intermediate carbonyl benzotriazoles then readily acylate nucleophilic reagents and peptides resulting in libraries of conjugates and peptidomimetics.  相似文献   

18.
Zirconium(IV) chloride catalyzed efficient one-pot synthesis of β-amino/β-acetamido carbonyl compounds at room temperature is described. In the presence of ZrCl4, the three-component Mannich-type reaction via a variety of in situ generated aldimines, with various ketones, aromatic aldehydes and aromatic amines in ethanol, led to the formation of β-amino carbonyl compounds and the four-component Mannich-type reaction of aromatic aldehydes with various ketones, acetonitrile and acetyl chloride resulted in the corresponding β-acetamido carbonyl compounds in high to excellent yields. This methodology has also been applied towards the synthesis of dimeric β-amino/β-acetamido carbonyl compounds.  相似文献   

19.
Selective hydrogenation of biogenic carboxylic acids is an important transformation for biorefinery concepts based on platform chemicals. We herein report a mechanistic study on the homogeneously ruthenium/phosphine catalyzed transformations of levulinic acid (LA) and itaconic acid (IA) to the corresponding lactones, diols, and cyclic ethers. A density functional theory (DFT) study was performed and corroborated with experimental data from catalytic processes and NMR investigations. For [Ru(TriPhos)H](+) as the catalytically active unit, a common mechanistic pathway for the reduction of the C═O functionality in aldehydes, ketones, lactones, and even free carboxylic acids could be identified. Hydride transfer from the Ru-H group to the carbonyl or carboxyl carbon is followed by protonation of the resulting Ru-O unit via σ-bond metathesis from a coordinated dihydrogen molecule. The energetic spans for the reduction of the different functional groups increase in the order aldehyde < ketone < lactone ≈ carboxylic acid. This reactivity pattern as well as the absolute values are in full agreement with experimentally observed activities and selectivities, forming a rational basis for further catalyst development.  相似文献   

20.
The title compound, ethyl 2‐hydroxy‐4‐oxo‐2‐phenyl­cyclo­hexane­carboxyl­ate, C15H18O4, was obtained by a Michael–Aldol condensation and has the cyclo­hexanone in a chair conformation. The attached hydroxy, ethoxy­carbonyl and phenyl groups are disposed in β‐axial, β‐equatorial and α‐­equatorial configurations, respectively. An intermolecular hydrogen bond, with an O?O distance of 2.874 (2) Å, links the OH group and the ring carbonyl. Weak intermolecular C—H?O=C (ester and ketone), O—H?O=C (ketone) and C—H?OH hydrogen bonds exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号