首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The convergent synthesis and characterization of a potential theranostic agent, [DPP‐ZnP‐GdDOTA]?, which combines a diketopyrrolopyrrole‐porphyrin component DPP‐ZnP as a two‐photon photosensitizer for photodynamic therapy (PDT) with a gadolinium(III) DOTA complex as a magnetic resonance imaging probe, is presented. [DPP‐ZnP‐GdDOTA]? has a remarkably high longitudinal water proton relaxivity (19.94 mm ?1 s?1 at 20 MHz and 25 °C) for a monohydrated molecular system of this size. The Nuclear Magnetic Relaxation Dispersion (NMRD) profile is characteristic of slow rotation, related to the extended and rigid aromatic units integrated in the molecule and to self‐aggregation occurring in aqueous solution. The two‐photon properties were examined and large two‐photon absorption cross‐sections around 1000 GM were determined between 910 and 940 nm in DCM with 1 % pyridine and in DMSO. Furthermore, the new conjugate was able to generate singlet oxygen, with quantum yield of 0.42 and 0.68 in DCM with 1 % pyridine and DMSO, respectively. Cellular studies were also performed. The [DPP‐ZnP‐GdDOTA]? conjugate demonstrated low dark toxicity and was able to induce high one‐photon and moderate two‐photon phototoxicity on cancer cells.  相似文献   

2.
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off‐target immune‐modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt‐based chemotherapeutic agents to exploit their immune‐activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal PtIV prodrug containing a FPR1/2‐targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.  相似文献   

3.
Two platinum(II) complexes, DN603 and DN604, were designed and prepared by using 3‐oxocyclobutane‐1,1‐dicarboxylate as a ligand. The compounds were prepared according to the concept that incorporation of a functionalized moiety in the leaving ligand that did not affect its coordination bonding to the metal atom would play a key role in the anticancer activity of the resulting platinum complex. The newly prepared compounds were found to show potent in vitro anticancer activity comparable to cisplatin and oxaliplatin; especially DN604, which exhibited low acute toxicity similar to carboplatin, and presented acceptable solubility and stability in water. Chemical and biological results indicated that the functionalized moiety, uncoordinated, led to potent anticancer activity and low apparent toxicity of the platinum complexes by affecting the kinetic properties of the compounds.  相似文献   

4.
A highly rigid open‐chain octadentate ligand (H4cddadpa) containing a diaminocylohexane unit to replace the ethylenediamine bridge of 6,6′‐[(ethane‐1,2 diylbis{(carboxymethyl)azanediyl})bis(methylene)]dipicolinic acid (H4octapa) was synthesized. This structural modification improves the thermodynamic stability of the Gd3+ complex slightly (log KGdL=20.68 vs. 20.23 for [Gd(octapa)]?) while other MRI‐relevant parameters remain unaffected (one coordinated water molecule; relaxivity r1=5.73 mm ?1 s?1 at 20 MHz and 295 K). Kinetic inertness is improved by the rigidifying effect of the diaminocylohexane unit in the ligand skeleton (half‐life of dissociation for physiological conditions is 6 orders of magnitude higher for [Gd(cddadpa)]? (t1/2=1.49×105 h) than for [Gd(octapa)]?. The kinetic inertness of this novel chelate is superior by 2–3 orders of magnitude compared to non‐macrocyclic MRI contrast agents approved for clinical use.  相似文献   

5.
6.
The structural and relaxometric characterization of a novel class of supramolecular aggregates, as potential tumor‐specific contrast agents in magnetic resonance imaging (MRI), is reported. The aggregates are based on a new monomer with an upsilon shape (MonY) that contains, in the same molecule, all three fundamental tasks that are required: 1) a hydrophobic moiety that allows the formation of supramolecular aggregates; 2) the bioactive CCK8 peptide for target recognition; and 3) a chelating agent able to give stable gadolinium complexes. As indicated by dynamic light scattering and small‐angle neutron scattering (SANS) measurements, MonY and its gadolinium complex MonY(Gd) aggregate in aqueous solution to give ellipsoidal micelles with a ratio between the micellar axes of ≈1.7 and an aggregation number Nagg of ≈30. There are no differences in the aggregation behavior of MonY and MonY(Gd), which indicates that the presence of metal ions, and therefore the reduction of the net charge, does not influence the aggregation behavior. When MonY or MonY(Gd) are blended with dioleoyl phosphatidylcholine (DOPC), the aggregation behavior is dictated by the tendency of DOPC to give liposomes. Only when the amount of MonY or MonY(Gd) is higher than 20 % is the coexistence of liposomes and micelles observed. The thickness d of the bilayer is estimated by SANS to be ≈35–40 Å, whereas cryogenic transmission electron microscopy images show that the diameter of the liposomes ranges from ≈50 to 150 nm. Self‐assembling micelles of MonY(Gd) present high relaxivity values (r1p=15.03 mM ?1 s?1) for each gadolinium complex in the aggregate. Liposomes containing MonY(Gd) inserted in the DOPC bilayer at a molar ratio of 20:80 present slightly lower relaxivity values (r1p=12.7 mM ?1 s?1), independently of their internal or external position in the liposome.  相似文献   

7.
Diverse iridium peptide bioconjugates and the corresponding iridium/gold bimetallic complexes have been synthesized starting from a cyclometallated carboxylic acid substituted IrIII complex [Ir(ppy)2(Phen-5-COO)] by solid phase peptide synthesis (SPPS). The selected peptide sequences were an enkephalin derivative Tyr-Gly-Gly-Phe-Leu together with the propargyl-substituted species Tyr-Gly-Pgl-Phe-Leu to allow gold coordination (Pgl: propyrgyl-glycine, HC≡C-Gly), and a specific short peptide, Ala-Cys-Ala-Phen, containing a cysteine residue. Introduction of the gold center has been achieved via a click reaction with the alkynyl group leading to an organometallic Au−C(triazole) species, or by direct coordination to the sulfur atom of the cysteine. The photophysical properties of these species revealed predominantly an emission originating from the Ir complex, using mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. The formation of the peptide bioconjugates caused a systematic redshift of the emission profiles. Lysosomal accumulation was observed for all the complexes, in contrast to the expected mitochondrial accumulation triggered by the gold complexes. Only the cysteine-containing Ir/Au bioconjugate displayed cytotoxic activity. The absence of activity may be related to the lack of endosomal/lysosomal escape for the cationic peptide conjugates. Interestingly, the different coordination sphere of the gold atom may play a crucial role, as the Au−S(cysteine) bond may be more readily cleaved in a biological environment than the Au−C(triazole) bond, and thus the Au fragment could be released from or trapped in the lysosomes, respectively. This work represents a starting point in the development of bimetallic peptide bioconjugates as theranostics and in the knowledge of factors that contribute to anti-proliferative activity.  相似文献   

8.
Understanding the nature of interactions of targeted drug‐delivery vehicles, such as functionalized carbon nanotubes (f‐CNTs) and their composites, with a cell or its organelles or DNA, where water is a major constituent, requires molecular‐level understanding of f‐CNTs with analogous chemical systems. The nature of interaction has not yet been explored within the scope of formation of giant aggregates by self‐assembly processes. Crystals of platinum(II) dithiolene [Pt(mnt)2][PPh4]2 ( 1 ) and gadolinium(III) dithiolene [Gd(mnt)3][PPh4]3 ( 2 ) (mnt=maleonitrile dithiolate) form nanospheres (diameter 88 nm) and nanoflowers (400–600 nm) in acetonitrile/water and DMF/water solvent mixtures, respectively. The formation of nanospheres or nanoflowers is proposed to be a water‐induced phenomenon. These nanospheres and nanoflowers interact with f‐CNTs by forming either spherical supramolecular assemblies ( 3 , diameter up to 45. 5 μm) in the case of platinum(II) dithiolene or composite flowers ( 4 ) with CNT buckling for gadolinium(III) dithiolene. Both nanostructures, ( 3 ) and ( 4 ), show emission upon excitation at a range of wavelengths (λex=385–560 nm). The fluorescence emissions of the composite materials 3 and 4 are proposed to be due to separation of energy states of the nanospheres of 1 or the nanoflowers of 2 by the energy states of the f‐CNTs, leading to the possibility of new electronic transitions.  相似文献   

9.
Water‐soluble platinum(IV) prodrugs, which proved kinetically stable to reduction in the presence of physiological concentration of ascorbate, were quickly reduced to their active form, oxaliplatin, when co‐incubated with a macrocycle metallotexaphyrin (i.e., Motexafin Gadolinium (MGd)). The reduction of PtIV to PtII promoted by MGd occurs in cell culture as well, leading to an increase in the antiproliferative activity of the PtIV species in question. The mediated effect is proportional to the concentration of MGd and gives rise to an enhancement when the prodrug is relatively hydrophilic. MGd is known to localize/accumulate preferentially in tumor tissues. Thus, the present “activation by reduction” approach may allow for the cancer‐selective enhancement in the cytotoxicity of PtIV prodrugs.  相似文献   

10.
Gadolinium(III)‐based contrast agents improve the sensitivity and specificity of magnetic resonance imaging (MRI), especially when targeted contrast agents are applied. Because of nonlinear correlation between the contrast agent concentration in tissue and the MRI signal obtained in vivo, quantification of certain biological or pathophysiological processes by MRI remains a challenge. Up to now, no technology has been able to provide a spatially resolved quantification of MRI agents directly within the tissue, which would allow a more precise verification of in vivo imaging results. MALDI imaging mass spectrometry for spatially resolved in situ quantification of gadolinium(III) agents, in correlation to in vivo MRI, were evaluated. Enhanced kinetics of Gadofluorine M were determined dynamically over time in a mouse model of myocardial infarction. MALDI imaging was able to corroborate the in vivo imaging MRI signals and enabled in situ quantification of the gadolinium probe with high spatial resolution.  相似文献   

11.
Mitochondria‐targeting theranostic probes that enable the simultaneously reporting of and triggering of mitochondrial dysfunctions in cancer cells are highly attractive for cancer diagnosis and therapy. Three fluorescent mitochondria‐targeting theranostic probes have been developed by linking a mitochondrial dye, coumarin‐3‐carboximide, with a widely used traditional Chinese medicine, artemisinin, to kill cancer cells. Fluorescence images showed that the designed coumarin–artemisinin conjugates localized mainly in mitochondria, leading to enhanced anticancer activities over artemisinin. High cytotoxicity against cancer cells correlated with the strong ability to accumulate in mitochondria, which could efficiently increase the intracellular reactive oxygen species level and induce cell apoptosis. This study highlights the potential of using mitochondria‐targeting fluorophores to selectively trigger and directly visualize subcellular drug delivery in living cells.  相似文献   

12.
There has been increasing interest in the development of small molecules that can selectively bind to G‐quadruplex DNA structures. The latter have been associated with a number of key biological processes and therefore are proposed to be potential targets for drug development. Herein, we report the first example of a reduction‐activated G‐quadruplex DNA binder. We show that a new octahedral platinum(IV)–salphen complex does not interact with DNA in aqueous media at pH 7.4; however, upon addition of bioreductants such as ascorbic acid or glutathione, the compound is readily reduced to the corresponding square planar platinum(II) complex. In contrast to the parent platinum(IV) complex, the in situ generated platinum(II) complex has good affinity for G‐quadruplex DNA.  相似文献   

13.
14.
Histone deacetylases inhibitors (HDACis) have gained much attention as a new class of anticancer agents in recent years. Herein, we report a series of fluorescent ruthenium(II) complexes containing N1‐hydroxy‐N8‐(1,10‐phenanthrolin‐5‐yl)octanediamide ( L ), a suberoylanilide hydroxamic acid (SAHA) derivative, as a ligand. As expected, these complexes show interesting chemiphysical properties, including relatively high quantum yields, large Stokes shifts, and long emission lifetimes. The in vitro inhibitory effect of the most effective drug, [Ru(DIP)2 L ](PF6)2 ( 3 ; DIP: 4,7‐diphenyl‐1,10‐phenanthroline), on histone deacetylases (HDACs) is approximately equivalent in activity to that of SAHA, and treatment with complex 3 results in increased levels of the acetylated histone H3. Complex 3 is highly active against a panel of human cancer cell lines, whereas it shows relatively much lower toxicity to normal cells. Further mechanism studies show that complex 3 can elicit cell cycle arrest and induce apoptosis through mitochondria‐related pathways and the production of reactive oxygen species. These data suggest that these fluorescent ruthenium(II)–HDACi conjugates may represent a promising class of anticancer agents for potential dual imaging and therapeutic applications targeting HDACs.  相似文献   

15.
16.
17.
Cytostatic agents that interfere with specific cellular components to prevent cancer cell growth offer an attractive alternative, or complement, to traditional cytotoxic chemotherapy. Here, we describe the synthesis and characterization of a new binuclear RuII–PtII complex [Ru(tpy)(tpypma)Pt(Cl)(DMSO)]3+ (tpy=2,2′:6′,2′′‐terpyridine and tpypma=4‐([2,2′:6′,2′′‐terpyridine]‐4′‐yl)‐N‐(pyridin‐2‐ylmethyl)aniline), VR54, which employs the extended terpyridine tpypma ligand to link the two metal centres. In cell‐free conditions, VR54 binds DNA by non‐intercalative reversible mechanisms (Kb=1.3×105 M ?1) and does not irreversibly bind guanosine. Cellular studies reveal that VR54 suppresses proliferation of A2780 ovarian cancer cells with no cross‐resistance in the A2780CIS cisplatin‐resistant cell line. Through the preparation of mononuclear RuII and PtII structural derivatives it was determined that both metal centres are required for this anti‐proliferative activity. In stark contrast to cisplatin, VR54 neither activates the DNA‐damage response network nor induces significant levels of cell death. Instead, VR54 is cytostatic and inhibits cell proliferation by up‐regulating the cyclin‐dependent kinase inhibitor p27KIP1 and inhibiting retinoblastoma protein phosphorylation, which blocks entry into S phase and results in G1 cell cycle arrest. Thus, VR54 inhibits cancer cell growth by a gain of function at the G1 restriction point. This is the first metal‐coordination compound to demonstrate such activity.  相似文献   

18.
Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side‐effects. Photoactivatable PtIV prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X‐ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans‐[Pt(N3)2(OH)2(MA)(Py)] ( 1 ; MA=methylamine, Py=pyridine) and trans,trans,trans‐[Pt(N3)2(OH)2(MA)(Tz)] ( 2 ; Tz=thiazole), and interpret their photophysical properties by TD‐DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1 p and 1 q . Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin‐resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf‐thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono‐ and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross‐links, with evidence for DNA strand cross‐linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin‐type lesions. The photo‐induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the PtII compounds trans‐[PtCl2(MA)(Py)] ( 5 ) and trans‐[PtCl2(MA)(Tz)] ( 6 ). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1 , whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation.  相似文献   

19.
During autophagy, the intracellular components are captured in autophagosomes and delivered to lysosomes for degradation and recycling. Changes in lysosomal trafficking and contents are key events in the regulation of autophagy, which has been implicated in many physiological and pathological processes. In this work, two iridium(III) complexes ( LysoIr1 and LysoIr2 ) are developed as theranostic agents to monitor autophagic lysosomes. These complexes display lysosome‐activated phosphorescence and can specifically label lysosomes with high photostability. Simultaneously, they can induce autophagy potently without initiating an apoptosis response. We demonstrate that LysoIr2 can effectively implement two functions, namely autophagy induction and lysosomal tracking, in the visualization of autophagosomal–lysosomal fusion. More importantly, they display strong two‐photon excited fluorescence (TPEF), which is favorable for live cell imaging and in vivo applications.  相似文献   

20.
Two star‐shaped phosphorescent small molecules, Ph‐3FPt(pic) and 4Ph‐3FPt(pic), are single‐component emitters in polymer white‐light‐emitting diodes (WPLEDs) that are comprised of three blue–light‐emitting phosphorescent chromophores of FPt(pic) and are attached to benzene‐1,3,5‐trioxy‐ and 1,3,5‐tri(4‐oxyphenyl)benzene cores through a hexyloxy chain, respectively. Compared to their corresponding mono‐ or dinuclear platinum complexes, this class of star‐shaped homotrinuclear cyclometalated platinum(II) complexes exhibited controllable excimer emission. Stable white/near‐white emission was obtained in single‐emissive‐layer PLEDs by using the Ph‐3FPt(pic) or 4Ph‐3FPt(pic) as a single dopant and a blend of poly(vinylcarbazole) and 2‐(4‐biphenyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole as a host matrix at dopant concentrations of 1–4 wt. %. Our results provide an efficient way to control excimer formation and to obtain a single‐component emitter for use in WPLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号