首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
This paper describes a calorimetric study of the association of a series of seven fluorinated benzenesulfonamide ligands (C6HnF5?nSO2NH2) with bovine carbonic anhydrase II (BCA). Quantitative structure–activity relationships between the free energy, enthalpy, and entropy of binding and pKa and log P of the ligands allowed the evaluation of the thermodynamic parameters in terms of the two independent effects of fluorination on the ligand: its electrostatic potential and its hydrophobicity. The parameters were partitioned to the three different structural interactions between the ligand and BCA: the ZnII cofactor–sulfonamide bond (≈65 % of the free energy of binding), the hydrogen bonds between the ligand and BCA (≈10 %), and the contacts between the phenyl ring of the ligand and BCA (≈25 %). Calorimetry revealed that all of the ligands studied bind in a 1:1 stoichiometry with BCA; this result was confirmed by 19F NMR spectroscopy and X‐ray crystallography (for complexes with human carbonic anhydrase II).  相似文献   

2.
The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha‐helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron‐transfer sites in cupredoxins (CuHis2Cys) or rubredoxins (FeCys4). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000‐fold.  相似文献   

3.
Transformations of sulfane sulfur compounds (e. g. organic polysulfides (R−Sn−R, n>2) and elemental sulfur (S8)) play pivotal roles in the biochemical landscape of sulfur, and thus supports signaling activities of H2S. Although a number of previous reports illustrate amine mediated reactions of S8 and thiol (RSH) yielding R−Sn−R, this report illustrates that a tripodal [ZnII] complex [( Bn3Tren )ZnII−OH2](ClO4)2 ( 1 ) facilitates the reactions of sulfane sulfur and thiol (RSH), thereby offering an amine-free biologically relevant complementary route. UV-vis monitoring of the reactions and a set of control experiments underline the definitive role of [ZnII] coordination motif in the reactions of sulfane sulfur (e. g. S8 and R−Sn−R) with RSH. Detailed investigations (UV-vis, NMR, ESI-MS, intermediate trapping, and TEMPO radical interference experiments) disclose the key differences in the [ZnII] versus previously known amine mediated routes. Moreover, the persulfide (RSS) trapping experiments using 1-fluoro-2,4-dinitrobenzene (F-DNB) reveal the intermediacy of RSS species in the [ZnII] mediated reactions of sulfane sulfur and thiol, thereby demonstrating [ZnII] assisted persulfidation of thiol in the presence of sulfane sulfur species. Of broader impact, this study underscores the feasible influence of biologically relevant [ZnII] coordination motifs (e. g. carbonic anhydrase) on the sulfane sulfur chemistry in biology.  相似文献   

4.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

5.
Directly 2,12‐ and 2,8‐linked ZnII porphyrin oligomers were prepared from 2,12‐ and 2,8‐diborylated ZnII porphyrin by a cross platinum‐induced coupling with a 2‐borylated ZnII porphyrin end unit followed by a triphenylphosphine (PPh3)‐mediated reductive elimination. Comparative studies on the steady‐state absorption and fluorescence spectra and the fluorescence lifetimes led to a conclusion that the exciton in the S1 state is delocalized over approximately four and two ZnII porphyrin units for 2,12‐ and 2,8‐linked ZnII porphyrin arrays, respectively.  相似文献   

6.
The reaction of ZnII nitrate with maleic acid (H2mal) / fumaric acid (H2fum) and 4,4′‐dipyridyl disulfide (4‐pds) resulted under same conditions in two distinct interpenetrated compounds, namely [Zn(4‐dps)2(H2O)2]·2Hmal ( 1 ) and [Zn(4‐dps)(fum)] ( 2 ). In 1 , Hmal anion adopts bridging mode based on hydrogen bonding, affording a 2‐fold parallel interpenetrated 3D→3D α‐Po net hydrogen‐bonded framework, in which 1D double‐stranded chains are formed, and then extended to a 3D supramolecular architecture combining second‐sphere hydrogen‐bonded interactions. For 2 , fum dianion takes on bis‐dentate bridging coordination fashion, furnishing a 2‐fold interpenetrated 2D→2D (4,4) layered coordination network, in which the tetrahedral ZnII atoms are interlinked by 4‐dps and fum. Additionally, the compound 2 shows strong fluorescence in the solid state at room temperature.  相似文献   

7.
The zinc transfer reactions from Zn7‐MT‐I, Zn7‐MT‐II, Zn4‐α fragment (MT‐I) and Zn4,‐α fragment (MT‐II) to apo‐carbonic anhydrase have been studied. In each reaction, no more than one zinc ion per molecule is involved in metal transfer. Zn7‐MT‐I and Zn7‐MT‐II donate zinc to apo‐carbonic anhydrase and de novo constitute it at a comparable efficiency, while Zn7‐MT‐II exhibits a little faster rate. Surprisingly, Zinc is released from Zn4‐α fragment (MT‐II) with a much faster rate than from Zn4‐α fragment (MT‐I), whose rate is close to that of Zn7‐MT‐I. The reason for the difference is still unknown. Introducing complex compounds into this system may give rise to an effect on the reaction. The transfer from Zn7‐MT‐II in the presence of reduced glutathione shows little difference compare to the control, suggesting that the reduced glutathione is not involved in zinc transfer process. However, glutathione disulfide does accelerate this zinc transfer reaction remarkably, indicating that the oxidative factors contribute to zinc release from metallothioneins.  相似文献   

8.
The kinetics of the catalyzed dehydration of HCO3? by zinc(II) containing tripod complexes has been studied at 25°C using the stopped‐flow technique. The direction of reaction curve was changed in aqueous solution when the pH of the solution was greater than 7.5. The pH‐profile of rates of the dehydration reactions indicates that only the aqua complex catalyzes the dehydration of HCO3? via a ligand substitution process. The second‐order rate constants for the dehydration of HCO3? catalyzed by complexes Zn3L1, Zn3L2, Zn3L3, and Zn3L4 are 0.96, 2.53, 12.05, and 6.99 mol?1 dm3 s?1 respectively. At the same time, the pKa values 7.60, 7.16, 7.51, and 7.42 for the deprotonation of the Zn(II)‐bound water in the four catalysts were obtained, which are consistent with those that resulted from pH titrations, i.e. 7.47, 7.25, 7.52, and 7.38 respectively. The mechanism is proposed and the results are compared with other model complexes of carbonic anhydrase. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 197–203, 2004  相似文献   

9.
The asymmetric Salamo‐type N2O2 ligand H2L and its corresponding CuII and ZnII complexes [CuL] and [{ZnL}2]·2CH3CN were synthesized and structurally characterized. Crystallographic data of the CuII complex revealed that the CuII ion is tetracoordinate with a slightly distorted square planar arrangement forming a 2D supramolecular plane structure by hydrogen bonding and π···π stacking interactions. In the ZnII complex, the ZnII ions are pentacoordinate in N2O2 tetradentate fashion and intermolecular contacts between ZnII and oxygen atoms result in a head‐to‐tail dimer. The ZnII ions were found to have slightly distorted square pyramidal and trigonal bipyramidal arrangements, respectively. Hydrogen bonding interactions stabilized the ZnII complex to facilitate self‐assembly to a 1D linear chain. The CuII and ZnII complexes show intense photoluminescence with maximum emissions at approx. 426 and 411 nm upon excitation at 360 and 350 nm, respectively.  相似文献   

10.
Unique self‐assembled macrocyclic multinuclear ZnII and NiII complexes with binaphthyl‐bipyridyl ligands (L) were synthesized. X‐ray analysis revealed that these complexes consisted of an outer ring (Zn3L3 or Ni3L3) and an inner core (Zn2 or Ni). In the ZnII complex, the inner Zn2 part rotated rapidly inside the outer ring in solution on an NMR timescale. These complexes exhibited dual catalytic activities for CO2 fixations: synthesis of cyclic carbonates from epoxides and CO2 and temperature‐switched N‐formylation/N‐methylation of amines with CO2 and hydrosilane.  相似文献   

11.
The [Fc? bis{ZnII(TACN)(Py)}] complex, comprising two ZnII(TACN) ligands (Fc=ferrocene; Py=pyrene; TACN=1,4,7‐triazacyclononane) bearing fluorescent pyrene chromophores linked by an electrochemically active ferrocene molecule has been synthesised in high yield through a multistep procedure. In the absence of the polyphosphate guest molecules, very weak excimer emission was observed, indicating that the two pyrene‐bearing ZnII(TACN) units are arranged in a trans‐like configuration with respect to the ferrocene bridging unit. Binding of a variety of polyphosphate anionic guests (PPi and nucleotides di‐ and triphosphate) promotes the interaction between pyrene units and results in an enhancement in excimer emission. Investigations of phosphate binding by 31P NMR spectroscopy, fluorescence and electrochemical techniques confirmed a 1:1 stoichiometry for the binding of PPi and nucleotide polyphosphate anions to the bis(ZnII(TACN)) moiety of [Fc? bis{ZnII(TACN)(Py)}] and indicated that binding induces a trans to cis configuration rearrangement of the bis(ZnII(TACN)) complexes that is responsible for the enhancement of the pyrene excimer emission. Pyrophosphate was concluded to have the strongest affinity to [Fc? bis{ZnII(TACN)(Py)}] among the anions tested based on a six‐fold fluorescence enhancement and 0.1 V negative shift in the potential of the ferrocene/ferrocenium couple. The binding constant for a variety of polyphosphate anions was determined from the change in the intensity of pyrene excimer emission with polyphosphate concentration, measured at 475 nm in CH3CN/Tris‐HCl (1:9) buffer solution (10.0 mM , pH 7.4). These measurements confirmed that pyrophosphate binds more strongly (Kb=(4.45±0.41)×106 M ?1) than the other nucleotide di‐ and triphosphates (Kb=1–50×105 M ?1) tested.  相似文献   

12.
The synthesis is reported of the tricarboxylic acid 3‐(3,5‐dicarboxybenzyloxy)benzoic acid (H3L) and the product of its reaction under solvothermal conditions with ZnII cations, namely poly[[μ6‐3‐(3,5‐dicarboxylatobenzyloxy)benzoato](dimethylformamide)‐μ3‐hydroxido‐dizinc(II)], [Zn2(C16H9O7)(OH)(C3H7NO)]n, the formation of which is associated with complete deprotonation of H3L. Its crystal structure consists of a single‐framework coordination polymer of the organic L3− ligand with ZnII cations in a 1:2 ratio, with additional hydroxide and dimethylformamide (DMF) ligands coordinated to the ZnII centres. The ZnII cations are characterized by coordination numbers of 5 and 6, being bridged to each other by hydroxide ligands. In the polymeric framework, the carboxylate‐ and hydroxy‐bridged ZnII cations are arranged in coordination‐tessellated columns, which propagate along the a axis of the crystal structure, and each L3− ligand links to seven different ZnII centres via Zn—O bonds of two different columns. The coordination framework, composed of [Zn2(L)(OH)(DMF)]n units, forms an open architecture, the channel voids within it being filled by the zinc‐coordinating DMF ligands. This report provides the first structural evidence for the formation of coordination polymers with H3L via multiple metal–ligand bonds through its carboxylate groups.<!?tpb=21.5pt>  相似文献   

13.
14.
Complexation studies of the dinucleating ligand H3L (H3L=2‐{[bis(pyridin‐2‐ylmethyl)amino]methyl}‐6‐{[bis(6‐pivaloylamidopyridin‐2‐ylmethyl)amino]methyl}‐4‐methylphenol), with metal‐binding sites A and B, which both provide four donors to a metal ion; a tertiary amine; two pyridines (substituted with amide hydrogen‐bond donors in site B), and a bridging phenolate, with ZnII, CuII, and GaIII are reported. The titration of H3L with the three metal ions in solution was monitored by NMR spectroscopy or EPR and UV/Vis/near‐IR spectroscopy, as well as by ESI‐MS to analyze the selectivity of the two metal‐ion sites A and B of this model ligand for metallophosphatases; the spectroscopic assignments are supported by X‐ray crystallography results. The first ZnII ion coordinates to site A with unsubstituted pyridine donors and, upon addition of a second equivalent of ZnII, this coordinates to the sterically less accessible site B. From a similar titration with GaIII, it emerges that only a mononuclear complex is obtained, with the GaIII center coordinated to site A. When one equivalent of GaIII is reacted with the mononuclear ZnII complex, ZnII is forced by GaIII to exchange the site; this results in a dinuclear complex with GaIII in site A and ZnII in site B. With CuII, two isomers are observed: one with and the other without a bridging phenolate; these differ significantly in their spectroscopic and magnetic properties.  相似文献   

15.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

16.
Metal complexes with Schiff base ligands have been suggested as potential phosphors in electroluminescent devices. In the title complex, tetrakis[6‐methyl‐2‐({[(pyridin‐2‐yl)methyl]imino}methyl)phenolato‐1:2κ8N,N′,O:O;3:2κ8N,N′,O:O]trizinc(II) hexafluoridophosphate methanol monosolvate, [Zn3(C14H13N2O)4](PF6)2·CH3OH, the ZnII cations adopt both six‐ and four‐coordinate geometries involving the N and O atoms of tetradentate 6‐methyl‐2‐({[(pyridin‐2‐yl)methyl]imino}methyl)phenolate ligands. Two terminal ZnII cations adopt distorted octahedral geometries and the central ZnII cation adopts a distorted tetrahedral geometry. The O atoms of the phenolate ligands bridge three ZnII cations, forming a dicationic trinuclear metal cluster. The title complex exhibits a strong emission at 469 nm with a quantum yield of 15.5%.  相似文献   

17.
Formation of a tetrahedron with >4 nm perylene bisimide (PBI) dye edges and ZnII vertices in a one‐pot 22 component self‐assembly reaction is reported. The luminescent polyhedron equilibrates to a Zn2L3 helicate and disassembles upon dilution. Insights into the subcomponent self‐assembly of extended PBI ligands help to refine design rules for constructing large photofunctional metallosupramolecular hosts.  相似文献   

18.
Hexakis(pentafluorophenyl)‐substituted meso–meso‐linked ZnII–diporphyrin ( 9 ), which was prepared by the acid‐catalyzed cross‐condensation of 1,1,2,2‐tetrapyrroethane ( 5 ) with dipyrromethane dicarbinol ( 6 ), was converted into meso–meso,β‐β,β‐β triply linked ZnII–diporphyrin 3 by oxidation with 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) and Sc(OTf)3. Beside the red‐shifted absorption spectrum and split first oxidation potential that are common to the triply‐linked ZnII–diporphyrins, diporphyrin 3 exhibited considerably improved chemical stability owing to a lowered HOMO and good solubility in common organic solvents. The two‐photon absorption (TPA) cross‐section and S1‐state lifetime of compound 3 were 1700 GM and 3.3 ps, respectively.  相似文献   

19.
The catalytic selective reduction of NO over metal‐exchanged (ZnII, AgI) natural zeolites (mordenite and clinoptilolite) from Cuba using NH3 as a reducing agent in the presence of excess oxygen was studied. Both transition metals slightly improve the catalytic performance for the NO reduction. ZnII‐exchanged zeolites exhibit a moderate catalytic activity, with conversions of NO of ≈58 % and high selectivity to N2 at high temperatures.  相似文献   

20.
A biomimetic catalyst was prepared through the self‐assembly of a bolaamphiphilic molecule with histidine moieties for the sequestration of carbon dioxide. The histidyl bolaamphiphilic molecule bis(N‐α‐amidohistidine)‐1,7‐heptane dicarboxylate has been synthesized and self‐assembled to produce analogues of the active sites of carbonic anhydrase (CA) after association with Zn2+ ions. Spectroscopic analysis demonstrated the coordination of the Zn2+ ions with histidine imidazole moieties, which is the core conformation of CA active sites. The Zn‐associated self‐assembly worked as a CA‐mimetic catalyst that shows catalytic activity for CO2 hydration. Evaluation of the kinetics of using para‐nitrophenylacetate revealed that the kinetic parameters of the CA‐mimetic catalyst were maximized at the optimal Zn concentration and that excess Zn ions resulted in deteriorated catalytic activity. The performance of the CA‐mimetic catalyst was enhanced by changing the pH value and temperature of the reaction, which implies that the hydrolysis of the substrate is the rate‐determining step. The catalyst‐assisted sequestration of CO2 was demonstrated by CaCO3 precipitation upon the addition of Ca2+ ions. This study offers an easy way to prepare enzyme analogues for CO2 sequestration through the self‐assembly of bolaamphiphile molecules with designer biochemical moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号