首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylene‐linked bis(N,N′‐di‐tert‐butylimidazol‐2‐ylidene) 1 reacted with diethylzinc to give dinuclear zinc ethyl compound 2 , which contains a formally anionic bis(carbene) ligand as a result of deprotonation of the methylene bridge. The reaction of 2 with PhSiH3 gave the phenylsilyl compound 3 . The zinc hydride 4 was obtained by the reaction of 2 with LiAlH4 or Ph3SiOH followed by treatment with PhSiH3. X‐ray diffraction studies show that compounds 2 , 3 , and 4 all have a similar dimeric structure with D2h symmetry. The reaction of hydride 4 with carbon dioxide and N,N′‐diisopropylcarbodiimide gave formato ( 5 ) and formamidinato ( 7 ) derivatives as a result of the insertion of the heterocumulene into both Zn? H bonds. Reaction with Ph2CO gave the diphenylmethoxy compound 6 . Hydride 4 shows catalytic activity in the hydrosilylation of 1,1‐diphenylethylene and methanolysis of silanes.  相似文献   

2.
3.
Activate and reduce : Carbon dioxide was reduced with silane using a stable N‐heterocyclic carbene organocatalyst to provide methanol under very mild conditions. Dry air can serve as the feedstock, and the organocatalyst is much more efficient than transition‐metal catalysts for this reaction. This approach offers a very promising protocol for chemical CO2 activation and fixation.

  相似文献   


4.
The NiII‐mediated tautomerization of the N‐heterocyclic hydrosilylcarbene L2Si(H)(CH2)NHC 1 , where L2=CH(C?CH2)(CMe)(NAr)2, Ar=2,6‐iPr2C6H3; NHC=3,4,5‐trimethylimidazol‐2‐yliden‐6‐yl, leads to the first N‐heterocyclic silylene (NHSi)–carbene (NHC) chelate ligand in the dibromo nickel(II) complex [L1Si:(CH2)(NHC)NiBr2] 2 (L1=CH(MeC?NAr)2). Reduction of 2 with KC8 in the presence of PMe3 as an auxiliary ligand afforded, depending on the reaction time, the N‐heterocyclic silyl–NHC bromo NiII complex [L2Si(CH2)NHCNiBr(PMe3)] 3 and the unique Ni0 complex [η2(Si‐H){L2Si(H)(CH2)NHC}Ni(PMe3)2] 4 featuring an agostic Si? H→Ni bonding interaction. When 1,2‐bis(dimethylphosphino)ethane (DMPE) was employed as an exogenous ligand, the first NHSi–NHC chelate‐ligand‐stabilized Ni0 complex [L1Si:(CH2)NHCNi(dmpe)] 5 could be isolated. Moreover, the dicarbonyl Ni0 complex 6 , [L1Si:(CH2)NHCNi(CO)2], is easily accessible by the reduction of 2 with K(BHEt3) under a CO atmosphere. The complexes were spectroscopically and structurally characterized. Furthermore, complex 2 can serve as an efficient precatalyst for Kumada–Corriu‐type cross‐coupling reactions.  相似文献   

5.
6.
7.
N‐Heterocyclic carbene (NHC) catalyzed transformations have emerged as powerful tactics for the construction of complex molecules. Since Stetter’s report in 1975 of the total synthesis of cis‐jasmon and dihydrojasmon by using carbene catalysis, the use of NHCs in total synthesis has grown rapidly, particularly over the last decade. This renaissance is undoubtedly due to the recent developments in NHC‐catalyzed reactions, including new benzoin, Stetter, homoenolate, and aroylation processes. These transformations employ typical as well as Umpolung types of bond disconnections and have served as the key step in several new total syntheses. This Minireview highlights these reports and captures the excitement and emerging synthetic utility of carbene catalysis in total synthesis.  相似文献   

8.
9.
10.
The synthesis and single‐crystal X‐ray structures of the novel molybdenum imido alkylidene N‐heterocyclic carbene complexes [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] ( 3 ), [Mo(N‐2,6‐Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] ( 4 ), [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] ( 5 ), [Mo(N‐2,6‐Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)]+ BArF? ( 6 ), [Mo(N‐2,6‐Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] ( 7 ) and [Mo(N‐2,6‐Cl2C6H3)(IMes)(CHCMe3)(OTf)2] ( 8 ) are reported (IMesH2=1,3‐dimesitylimidazolidin‐2‐ylidene, IMes=1,3‐dimesitylimidazolin‐2‐ylidene, BArF?=tetrakis‐[3,5‐bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3?). Also, silica‐immobilized versions I1 and I2 were prepared. Catalysts 3 – 8 , I1 and I2 were used in homo‐, cross‐, and ring‐closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω‐diynes. In the RCM of α,ω‐dienes, in the homometathesis of 1‐alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100 000, 210 000 and 30 000, respectively, were achieved. With I1 and I2 , virtually Mo‐free products were obtained (<3 ppm Mo). With 1,6‐hepta‐ and 1,7‐octadiynes, catalysts 3 , 4 , and 5 allowed for the regioselective cyclopolymerization of 4,4‐bis(ethoxycarbonyl)‐1,6‐heptadiyne, 4,4‐bis(hydroxymethyl)‐1,6‐heptadiyne, 4,4‐bis[(3,5‐diethoxybenzoyloxy)methyl]‐1,6‐heptadiyne, 4,4,5,5‐tetrakis(ethoxycarbonyl)‐1,7‐octadiyne, and 1,6‐heptadiyne‐4‐carboxylic acid, underlining the high functional‐group tolerance of these novel Group 6 metal alkylidenes.  相似文献   

11.
A straightforward and scalable eight‐step synthesis of new N‐heterocyclic carbenes (NHCs) has been developed from inexpensive and readily available 2‐nitro‐m‐xylene. This process allows for the preparation of a novel class of NHCs coined ITent (“Tent” for “tentacular”) of which the well‐known IMes (N,N′‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene), IPr (N,N′‐bis(2,6‐di(2‐propyl)phenyl)imidazol‐2‐ylidene) and IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) NHCs are the simplest and already known congeners. The synthetic route was successfully used for the preparation of three members of the ITent family: IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene), IHept (N,N′‐bis(2,6‐di(4‐heptyl)phenyl)imidazol‐2‐ylidene) and INon (N,N′‐bis(2,6‐di(5‐nonyl)phenyl)imidazol‐2‐ylidene). The electronic and steric properties of each NHC were studied through the preparation of both nickel and palladium complexes. Finally the effect of these new ITent ligands in Pd‐catalyzed Suzuki–Miyaura and Buchwald–Hartwig cross‐couplings was investigated.  相似文献   

12.
Described is the first study on oxidative enantioselective α‐fluorination of simple aliphatic aldehydes enabled by N‐heterocyclic carbene catalysis. N‐fluorobis(phenyl)sulfonimide serves as a an oxidant and as an “F” source. The C? F bond formation occurs directly at the α position of simple aliphatic aldehydes, thus overcoming nontrivial challenges, such as competitive difluorination and nonfluorination, and proceeds with high to excellent enantioselectivities.  相似文献   

13.
We synthesized the first N‐heterocyclic carbene (NHC) complexes of Schrock’s molybdenum imido alkylidene bis(triflate) complexes. Unlike existing bis(triflate) complexes, the novel 16‐electron complexes represent metathesis active, functional‐group‐tolerant catalysts. Single‐crystal X‐ray structures of two representatives of this novel class of Schrock catalysts are presented and reactivity is discussed in view of their structural peculiarities. In the presence of monomer (substrate), these catalysts form cationic species and can be employed in ring‐closing metathesis (RCM), ring‐opening metathesis polymerization (ROMP), as well as in the cyclopolymerization of α,ω‐diynes. Monomers containing functional groups, which are not tolerated by the existing variations of Schrock’s catalyst, e.g., sec‐amine, hydroxy, and carboxylic acid moieties, can be used. These catalysts therefore hold great promise in both organic and polymer chemistry, where they allow for the use of protic monomers.  相似文献   

14.
An asymmetric tail‐to‐tail cross‐hydroalkenylation of vinylarenes with terminal olefins was achieved by catalysis with NiH complexes bearing chiral N‐heterocyclic carbenes (NHCs). The reaction provides branched gem‐disubstituted olefins with high enantioselectivity (up to 94 % ee) and chemoselectivity (cross/homo product ratio: up to 99:1). Electronic effects of the substituents on the vinylarenes and on the N‐aryl groups of the NHC ligands, but not a π,π‐stacking mechanism, assist the steric effect and influence the outcome of the cross‐hydroalkenylation.  相似文献   

15.
A new polymerization termed proton (H)‐transfer polymerization (HTP) has been developed to convert dimethacrylates to unsaturated polyesters. HTP is catalyzed by a selective N‐heterocyclic carbene capable of promoting intermolecular Umpolung condensation through proton transfer and proceeds through the step‐growth propagation cycles via enamine intermediates. The role of the added suitable phenol, which is critical for achieving an effective HTP, is twofold: shutting down the radically induced chain‐growth addition polymerization under HTP conditions (typically at 80–120 °C) and facilitating proton transfer after each monomer enchainment. The resulting unsaturated polyesters have a high thermal stability and can be readily cross‐linked to robust polyester materials.  相似文献   

16.
Amino acid‐derived chiral imidazolium salts, each bearing a pyridine ring, were developed as N‐heterocyclic carbene ligands. The copper‐catalyzed asymmetric alkylation of various N‐sulfonylimines with dialkylzinc reagents in the presence of these chiral imidazolium salts afforded the corresponding alkylated products with high enantioselectivity (up to 99 % ee). The addition of HMPA to the reaction mixture as a co‐solvent is critical in terms of chemical yield and enantioselectivity. A wide range of N‐sulfonylimines and dialkylzinc reagents were found to be applicable to this reaction.  相似文献   

17.
The highly enantioselective NHC‐catalyzed [3+2] annulation reaction with α,β‐alkynals and α‐ketoesters has been developed. A new mode of cooperative catalysis involving the combination of a chiral Brønsted acid and a C1‐symmetric biaryl saturated‐imidazolium precatalyst was required to generate the desired γ‐crotonolactones in high yields and levels of enantioselectivity.  相似文献   

18.
Arynes were generated in situ from ortho‐silyl aryl triflates and fluoride ions in the presence of stable N‐heterocyclic carbene boranes (NHC? BH3). Spontaneous hydroboration ensued to provide stable B‐aryl‐substituted NHC‐boranes (NHC? BH2Ar). The reaction shows good scope in terms of both the NHC‐borane and aryne components and provides direct access to mono‐ and disubstituted NHC‐boranes. The formation of unusual ortho regioisomers in the hydroboration of arynes with an electron‐withdrawing group supports a hydroboration process with hydride‐transfer character.  相似文献   

19.
Enders' N‐heterocyclic carbene (NHC) dehydrogenates ammonia–borane with a relatively low barrier, producing NH2BH2 and NHC–(H)2. The nickel NHC catalyst present in the reaction media can activate the NHC–(H)2 produced to regenerate the free NHC and release H2. The release of free NHC enables further dehydrogenation of ammonia–borane.

  相似文献   


20.
N‐Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry. They not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine. Because of their specific coordination chemistry, N‐heterocyclic carbenes both stabilize and activate metal centers in quite different key catalytic steps of organic syntheses, for example, C−H activation, C−C, C−H, C−O, and C−N bond formation. There is now ample evidence that in the new generation of organometallic catalysts the established ligand class of organophosphanes will be supplemented and, in part, replaced by N‐heterocyclic carbenes. Over the past few years, this chemistry has been the field of vivid scientific competition, and yielded previously unexpected successes in key areas of homogeneous catalysis. From the work in numerous academic laboratories and in industry, a revolutionary turning point in oraganometallic catalysis is emerging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号