首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syntheses of methyl 4‐(4‐nitrophenyl)‐3‐oxomorpholine‐2‐carboxylate ( 3a ) and ethyl 4‐(4‐nitrophenyl)‐2‐oxomorpholine‐3‐carboxylate ( 5b ), important building blocks for the synthesis of factor Xa inhibitor rivaroxaban analogs with potential dual antithrombotic activity, via Rh2(OAc)4‐catalyzed O? H and N? H carbene insertion reactions are described.  相似文献   

2.
Cu‐catalyzed aerobic oxidations of readily available 3‐N‐hydroxyaminopro‐1‐ynes with water, alcohols, or thiols to form diverse 3‐substituted 3‐amino‐2‐en‐1‐ones are described. The utility of this catalysis is manifested by a wide scope of applicable N‐hydroxyl propargylamines and nucleophiles, thus enabling the design of one‐pot cascade or two‐step sequential reactions. Besides synthetic significances, such oxidative Mannich reactions are mechanistically interesting because structurally reorganized products were obtained. Our mechanistic studies reveal that the aerobic oxidations involve initial formation of nitrone intermediates, followed by the attack of nucleophiles. Herein, water and MeOH implement the conversion of nitrone intermediates to reaction products in two distinct pathways.  相似文献   

3.
The title compound, 2‐hydroxy­phenyl 5‐(pyrrol‐2‐yl)‐3H‐pyrrolizin‐6‐yl ketone, C18H14N2O2, was isolated from the base‐catalyzed 1:2 condensation of 2‐hydroxy­aceto­phenone with pyrrole‐2‐carbaldehyde. The pyrrole N—H and hydroxy­benzoyl O—H groups are hydrogen bonded to the benzoyl O atom. The allyl­ic C=C double bond of the 3H‐pyrrolizine system is located between ring positions 1 and 2, the C atom at position 3 (adjacent to the N atom) being single bonded.  相似文献   

4.
Gold‐catalyzed oxidations of 2‐ketonyl‐1‐ethynyl benzenes with N‐hydroxyanilines yield 2‐aminoindenone derivatives efficiently. Experimental data suggests that this process involves an α‐oxo gold carbene intermediate, generated from the attack of N‐hydroxyaniline on furylgold carbene intermediate, rather than the typical attack of oxidants on π‐alkynes.  相似文献   

5.
A straightforward N‐trifluoroethylation of anilines has been developed based on silver‐catalyzed N? H insertions with 2,2,2‐trifluorodiazoethane (CF3CHN2). Mechanistically, the reaction is proposed to involve migratory insertion of a silver carbene as the key step. In contrast, when amides are employed as the substrates under similar reaction conditions, O‐trifluoroethylation occurs to afford trifluoroethyl imidates.  相似文献   

6.
In the molecule of the title compound, C17H20N4O5, there are two intramolecular N—H...O hydrogen bonds having amidic and nitro‐group O atoms as the acceptors and together forming a three‐centre N—H...(O)2 system. These interactions appear to play an important role in controlling the relative orientation of the pyrazole and aryl rings. The bond distances provide evidence for some polarization of the electronic structure. Molecules are linked into simple chains by a single C—H...O hydrogen bond.  相似文献   

7.
The title compound, C12H19N3O2, is an unusual product of silica‐catalyzed intermolecular condensation of α‐amino­isobutyric acid. The mol­ecule has three types of C—N bonds: a double bond, a cis‐amide bond and single bonds, two of which are typical and two having intermediate lengths due to π‐electron delocalization between C=N and C=O groups. The cis‐amide moieties interact to form dimers via hydrogen bonds which stack in parallel layers.  相似文献   

8.
The title structures, both C10H10N4O, are substitutional isomers. The N—N bond lengths are longer and the C=N bond lengths are shorter by ca 0.025 Å than the respective average values in the C=N—N=C group of asymmetric triazines; the assessed respective bond orders are 1.3 and 1.7. There are N—H⋯O and N—H⋯N hydrogen bonds in both structures, with 4‐­amino‐3‐methyl‐6‐phenyl‐1,2,4‐triazin‐5(4H)‐one containing a rare bifurcated N—H⋯N,N hydrogen bond. The structures differ in their mol­ecular stacking and the hydrogen‐bonding patterns.  相似文献   

9.
The non‐H atoms in the organic component of the title compound, C8H7N3OS2·H2O, are almost coplanar, as the dihedral angle between the two ring planes is only 1.8 (2)°; there is a wide C—C—C angle of 127.8 (3)° at the methine C atom linking the two rings. The molecular components are linked into a three‐dimensional framework structure by two‐centre hydrogen bonds of N—H...O and O—H...N types, together with a three‐centre O—H...(N,S) system. Comparisons are made with some (Z)‐5‐arylmethylidene‐2‐sulfanylidene‐1,3‐thiazolidin‐4‐ones.  相似文献   

10.
The molecules of 5‐amino‐1‐(4‐methoxybenzoyl)‐3‐methylpyrazole, C12H13N3O2, (I), and 5‐amino‐3‐methyl‐1‐(2‐nitrobenzoyl)pyrazole, C11H10N4O3, (II), both contain intramolecular N—H...O hydrogen bonds. The molecules of (I) are linked into a chain of rings by a combination of N—H...N and N—H...π(arene) hydrogen bonds, while those of (II) are linked into a three‐dimensional framework structure by N—H...N and C—H...O hydrogen bonds.  相似文献   

11.
The title compounds, C10H9N5O·H2O (L1·H2O) and C16H12N6O (L2), were synthesized by solvent‐free aldol condensation at room temperature. L1, prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 1:1 molar ratio, crystallized as a monohydrate. L2 was prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 2:1 molar ratio. By varying the conditions of crystallization it was possible to obtain two polymorphs, viz. L2‐I and L2‐II; both crystallized in the monoclinic space group P21/c. They differ in the orientation of one pyridine ring with respect to the plane of the imidazole ring. In L2‐I, this ring is oriented towards and above the imidazole ring, while in L2‐II it is rotated away from and below the imidazole ring. In all three molecules, there is a short intramolecular N—H...N contact inherent to the planarity of the systems. In L1·H2O, this involves an amino H atom and the C=N N atom, while in L2 it involves an amino H atom and an imidazole N atom. In the crystal structure of L1·H2O, there are N—H...O and O—H...O intermolecular hydrogen bonds which link the molecules to form two‐dimensional networks which stack along [001]. These networks are further linked via intermolecular N—H...N(cyano) hydrogen bonds to form an extended three‐dimensional network. In the crystal structure of L2‐I, symmetry‐related molecules are linked via N—H...N hydrogen bonds, leading to the formation of dimers centred about inversion centres. These dimers are further linked via N—H...O hydrogen bonds involving the amide group, also centred about inversion centres, to form a one‐dimensional arrangement propagating in [100]. In the crystal structure of L2‐II, the presence of intermolecular N—H...O hydrogen bonds involving the amide group results in the formation of dimers centred about inversion centres. These are linked via N—H...N hydrogen bonds involving the second amide H atom and the cyano N atom, to form two‐dimensional networks in the bc plane. In L2‐I and L2‐II, C—H...π and π–π interactions are also present.  相似文献   

12.
In the title compound, C22H24N4O11, the N‐glycosidic torsion angles O′—C′—N—C and O′—C′—N—N are ?34.1 (6) and 148.8 (3)°, respectively. The mol­ecule displays an α‐d configuration with the ribo­furan­ose moiety in an O′‐exo–C′‐endo pucker. There are only weak C—H?O and C—H?N intra‐ and intermolecular interactions.  相似文献   

13.
A straightforward, protecting‐group‐free protocol for the synthesis of chiral 6‐substituted and 6,6’‐disubstituted binols (binol = 1,1’‐bi‐2‐naphthol) by palladium‐catalyzed hydroxylation, C–N and C–O coupling of chiral 6‐bromo‐ and 6,6’ ‐dibromo‐1,1’‐binaphthols is developed. The protecting group free palladium‐catalyzed hydroxylation, C–O and C–N cross‐coupling protocol affords a straightforward and general method for the synthesis of chiral 6‐substituted and 6,6’‐disubstituted binols with good yields, avoiding the tedious procedures of introduction and removal of protecting groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

15.
Molecules of the title compound, C5H6N4O3, are linked into a single three‐dimensional framework by a two‐centre N—H⃛O hydrogen bond [H⃛O = 1.92 Å, N⃛O = 2.785 (2) Å and N—H⃛O = 168°], a two‐centre N—H⃛H hydrogen bond [H⃛N = 2.19 Å, N⃛N = 3.017 (2) Å and N—H⃛N = 157°] and the intermolecular component of an effectively planar three‐centre N—H⃛(O)2 hydrogen bond [H⃛O = 2.03 and 2.31 Å, N⃛O = 2.645 (2) and 2.957 (2) Å, N—H⃛O = 126 and 130°, and O⃛H⃛O = 101°].  相似文献   

16.
In 2‐amino‐4,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, the mol­ecules are linked by one N—H⋯N and one N—H⋯O hydrogen bond to form sheets built from alternating R(8) and R(32) rings. In isomeric 4‐amino‐2,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, which crystallizes with Z′ = 2 in P, the two independent mol­ecules are linked into a dimer by two independent N—H⋯N hydrogen bonds. These dimers are linked into sheets by a combination of two‐centre C—H⋯O and three‐centre C—H⋯(O)2 hydrogen bonds, and the sheets are further linked by two independent aromatic π–π‐stacking interactions to form a three‐dimensional structure.  相似文献   

17.
In the title compound (systematic name: N‐anilino‐4‐nitrobenzamide), C13H11N3O3, the molecules are linked into a complex three‐dimensional framework structure by a combination of two‐centre N—H...O and C—H...O hydrogen bonds and a three‐centre N—H...(O,N) hydrogen bond.  相似文献   

18.
The structures are presented for both diastereomers of the title compound, C15H20O4, produced by base‐catalyzed self‐condensation of cyclo­hexane‐cis‐1,2‐di­carboxyl­ic anhydride in refluxing triethyl­amine. Equilibration of either diastereomer under the condensation conditions yielded the same 5:3 mixture. In the crystal, one diastereomer, (II), is ordered, while the other, (I), displays both flexional ring disorder and carboxyl disorder; both aggregate as centrosymmetric hydrogen‐bonded dimers [for (I), O?O = 2.680 (2) Å; for (II), O?O = 2.635 (4) Å].  相似文献   

19.
The title complex, [Ag(C5H4NO)(C5H5NO)]n, consists of a polymeric neutral chain involving both a neutral pyridin‐4‐ol ligand and a deprotonated pyridin‐4‐olate monoanion. The AgI atom shows a T‐shaped coordination geometry, defined by one N atom of the pyridin‐4‐ol and one O and one N atom of two independent pyridin‐4‐olate bridges; the N—Ag—N moiety is approximately linear. The polymeric chains are connected via strong O—H⋯O hydrogen bonds and offset π–π interactions into a three‐dimensional network.  相似文献   

20.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号