首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The photocatalyzed ortho‐selective migration on a pyridyl ring has been achieved for the site‐selective trifluoromethylative pyridylation of unactivated alkenes. The overall process is initiated by the selective addition of a CF3 radical to the alkene to provide a nucleophilic alkyl radical intermediate, which enables an intramolecular endo addition exclusively to the ortho‐position of the pyridinium salt. Both secondary and tertiary alkyl radicals are well‐suited for addition to the C2‐position of pyridinium salts to ultimately provide synthetically valuable C2‐fluoroalkyl functionalized pyridines. Moreover, the method was successfully applied to the reaction with P‐centered radicals. The utility of this transformation was further demonstrated by the late‐stage functionalization of complex bioactive molecules.  相似文献   

4.
The synthesis of alkyl boronic esters by direct decarboxylative radical addition of carboxylic acids to vinyl boronic esters is described. The reaction proceeds under mild photoredox catalysis and involves an unprecedented single‐electron reduction of an α‐boryl radical intermediate to the corresponding anion. The reaction is amenable to a diverse range of substrates, including α‐amino, α‐oxy, and alkyl carboxylic acids, thus providing a novel method to rapidly access boron‐containing molecules of potential biological importance.  相似文献   

5.
Oxyfunctionalized molecules are principal building blocks in organic synthesis. In cellular processes highly efficient enzymes serve as selective catalysts for the formation of such synthetic units, for example the oxygenases oxyfunctionalize substrates by activating molecular oxygen. To date no comparable effective chemical oxidation system has been found. A useful photochemical process is the oxyfunctionalization of allylic substrates by sensitized photooxygenation, for which molecular oxygen and light serve as natural sources. This allylic oxidation of olefins by the ene reaction with singlet oxygen (Schenck reaction) figures as a highly versatile synthetic method. While the regioselectivity of this transformation has been studied for decades, only during the last years has attention focused on stereocontrol. Through these recent efforts it has become possible to control high stereoselectivity in the photooxygenation of organic substrates. This breakthrough has enhanced substantially the utility of singlet oxygen in diastereoselective synthesis.  相似文献   

6.
Visible‐light irradiation of 4‐p‐methoxyphenyl‐3‐butenylthioglucoside donors in the presence of Umemoto's reagent and alcohol acceptors serves as a mild approach to O‐glycosylation. Visible‐light photocatalysts are not required for activation, and alkyl‐ and arylthioglycosides not bearing the p‐methoxystyrene are inert to these conditions. Experimental and computational evidence for an intervening electron donor–acceptor complex, which is necessary for reactivity, is provided. Yields with primary, secondary, and tertiary alcohol acceptors range from moderate to high. Complete β‐selectivity can be attained through neighboring‐group participation.  相似文献   

7.
We report the visible‐light‐mediated synthesis of β‐chloro ketones from aryl cyclopropanes, oxygen, hydrochloric acid, and nitric acid. The operationally simple and catalyst‐free method uses cheap standard laboratory reagents and displays broad functional‐group tolerance. Moreover, scale up of the reaction and late‐stage functionalization of bioactive compounds is possible, providing the opportunity to utilize the cyclopropane ring as a masked β‐chloro ketone in a reaction sequence. We propose a light‐driven radical chain reaction initiated by the reaction of diluted hydrochloric and nitric acid to produce small quantities of molecular chlorine. The mechanistic hypothesis is supported by 18O labelling and UV/Vis experiments, cyclovoltammetry, and several control reactions.  相似文献   

8.
Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet‐oxygen‐mediated oxidation of 1° and 2° amines is sensitive to the strength of the α‐C?H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one‐bond C?H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross‐couplings to produce imines.  相似文献   

9.
10.
In this contribution a convenient synthetic method to obtain tetraacylgermanes Ge[C(O)R]4 (R=mesityl ( 1 a ), phenyl ( 1 b )), a previously unknown class of highly efficient Ge‐based photoinitiators, is described. Tetraacylgermanes are easily accessible via a one‐pot synthetic protocol in >85 % yield, as confirmed by NMR spectroscopy, mass spectrometry, and X‐ray crystallography. The efficiency of 1 a , b as photoinitiators is demonstrated in photobleaching (UV/Vis), time‐resolved EPR (CIDEP), and NMR/CIDNP investigations as well as by photo‐DSC studies. Remarkably, the tetraacylgermanes exceed the performance of currently known long‐wavelength visible‐light photoinitiators for free‐radical polymerization  相似文献   

11.
Photochemistry has ushered in a new era in the development of chemistry, and photoredox catalysis has become a hot topic, especially over the last five years, with the combination of visible‐light photoredox catalysis and radical reactions. A novel, simple, and efficient radical oxidative decarboxylative coupling with the assistant of the photocatalyst [Ru(phen)3]Cl2 is described. Various functional groups are well‐tolerated in this reaction and thus provides a new approach to developing advanced methods for aerobic oxidative decarboxylation. The preliminary mechanistic studies revealed that: 1) an SET process between [Ru(phen)3]2+* and aniline play an important role; 2) O2 activation might be the rate‐determining step; and 3) the decarboxylation step is an irreversible and fast process.  相似文献   

12.
Under visible‐light irradiation, the gold‐catalyzed intermolecular difunctionalization of alkynes with aryl diazonium salts in methanol affords a variety of α‐aryl ketones in moderate to good yields. In contrast to previous reports on gold‐catalyzed reactions that involve redox cycles, no external oxidants or photosensitizers are required. The reaction proceeds smoothly under mild reaction conditions and shows broad functional‐group tolerance. Further applications of this method demonstrate the general applicability of the arylation of a vinyl gold intermediate instead of the commonly used protodemetalation step. This step provides facile access to functionalized products in one‐pot processes. With a P,N‐bidentate ligand, a stable aryl gold(III) species was obtained, which constitutes the first direct experimental evidence for the commonly postulated direct oxidative addition of an aryl diazonium salt to a pyridine phosphine gold(I) complex.  相似文献   

13.
A stereodivergent reductive coupling reaction between allylic carbonates and vinyl triflates to furnish both E‐ and Z‐configured 1,4‐dienes has been achieved by visible‐light‐induced photoredox/nickel dual catalysis. The mild reaction conditions allow good compatibility of both vinyl triflates and allylic carbonates. Notably, the stereoselectivity of this synergistic cross‐electrophile coupling can be tuned by an appropriate photocatalyst with a suitable triplet‐state energy, providing a practical and stereodivergent means to alkene synthesis. Preliminary mechanistic studies shed some light on the coupling step as well as the control of the stereoselectivity step.  相似文献   

14.
Although metal‐ion‐directed self‐assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self‐assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer. Not only does this Ru2Re2 system possess potent photocytotoxicity at light fluences below those used for current medically employed systems, it offers an entirely new paradigm for the construction of sensitizers for photodynamic therapy.  相似文献   

15.
High pressure under the spotlight : A new milliliter‐scale reactor is developed for using supercritical CO2 to perform continuous photo‐oxidation reactions. Changing from a traditional microliter‐scale batch reaction to 8 hours of reaction using the new reactor gives a 3000‐fold scale‐up of the oxidation of α‐terpinene (see picture).

  相似文献   


16.
17.
The title compounds underwent a facile and high‐yielding addition reaction (19 examples, 66–99 % yield) with various N‐(trimethylsilyl)methyl‐substituted amines upon irradiation with visible light and catalysis by a metal complex. If the alkylidene substituent is non‐symmetric and if the reaction is performed in the presence of a chiral hydrogen‐bonding template, products are obtained with significant enantioselectivity (58–72 % ee) as a mixture of diastereoisomers. Mechanistic studies suggest a closed catalytic cycle for the photoactive metal complex. However, the silyl transfer from the amine occurs not only to the product, but also to the substrate, and interferes with the desired chirality transfer.  相似文献   

18.
Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal‐O2 batteries, and are believed to form and decompose reversibly in metal‐O2/CO2 cells. In these cathodes, Li2CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+. However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2CO3→4 Li++4 e?+2 CO2+O2, is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1O2) forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. These results have substantial implications for the long‐term cyclability of batteries: they underpin the importance of avoiding 1O2 in metal‐O2 batteries, question the possibility of a reversible metal‐O2/CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition‐metal cathodes with residual Li2CO3.  相似文献   

19.
20.
We report the use of bioorthogonal reactions as an original strategy in photodynamic therapy to achieve conditional phototoxicity and specific subcellular localization simultaneously. Our novel halogenated BODIPY‐tetrazine probes only become efficient photosensitizers (ΦΔ≈0.50) through an intracellular inverse‐electron‐demand Diels–Alder reaction with a suitable dienophile. Ab initio computations reveal an activation‐dependent change in decay channels that controls 1O2 generation. Our bioorthogonal approach also enables spatial control. As a proof‐of‐concept, we demonstrate the feasibility of the selective activation of our dormant photosensitizer in cellular nuclei, causing cancer cell death upon irradiation. Thus, our dual biorthogonal, activatable photosensitizers open new venues to combat current limitations of photodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号