首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The discovery that palladacycles are efficient catalysts for the allylic imidate rearrangement has resulted in the successful application of several such complexes to this reaction based on planar chiral iron and cobalt containing metallocenes. These palladacycles enable the efficient and highly enantioselective synthesis of a wide variety of protected allylic amines, which are valuable building blocks for use in asymmetric synthesis.  相似文献   

2.
李岩云 《分子催化》2011,25(1):90-96
本文介绍了手性铁催化体系在酮及亚胺的不对称还原、烯烃及硫醚的不对称氧化、不对称环加成、不对称环丙烷化以及不对称Friedel-Crafts烷基化等反应中的应用.  相似文献   

3.
Oxygen reduction in acidic aqueous solution mediated by a series of asymmetric iron (III)‐tetra(aryl)porphyrins adsorbed to basal‐ and edge‐ plane graphite electrodes is investigated. The asymmetric iron porphyrin systems bear phenyl groups at three meso positions and either a 2‐pyridyl, a 2‐benzoic acid, or a 2‐hydroxyphenyl group at the remaining meso position. The presence of the three unmodified phenyl groups makes the compounds insoluble in water, enabling catalyst retention during electrochemical experiments. Resonance Raman data demonstrate that catalyst layers are maintained, but can undergo modification after prolonged catalysis in the presence of O2. The introduction of a single proton relay group at the fourth meso position makes the asymmetric iron porphyrins markedly more robust catalysts; these molecules support higher sustained current densities than the parent iron tetraphenylporphyrin. Iron porphyrins bearing a 2‐pyridyl group are the most active catalysts and operate at stable current densities ≥1 mA cm?2 for over 5 h. Comparative analysis of the catalysts with different proton relays also is reported.  相似文献   

4.
Palladium‐catalyzed allylic substitution reactions are among the most efficient methods to construct C?C bonds between sp3‐hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a “soft”‐nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with “hard” nucleophiles, which attack the metal before C?C bond formation. Introduced herein is a rare nickel‐based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft‐nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.  相似文献   

5.
Hydrogenation catalysts involving abundant base metals such as cobalt or iron are promising alternatives to precious metal systems. Despite rapid progress in this field, base metal catalysts do not yet achieve the activity and selectivity levels of their precious metal counterparts. Rational improvement of base metal complexes is facilitated by detailed knowledge about their mechanisms and selectivity‐determining factors. The mechanism for asymmetric imine hydrogenation with Knölker’s iron complex in the presence of chiral phosphoric acids is here investigated computationally at the DFT‐D level of theory, with models of up to 160 atoms. The resting state of the system is found to be an adduct between the iron complex and the deprotonated acid. Rate‐limiting H2 splitting is followed by a stepwise hydrogenation mechanism, in which the phosphoric acid acts as the proton donor. C?H ??? O interactions between the phosphoric acid and the substrate are involved in the stereocontrol at the final hydride transfer step. Computed enantiomeric ratios show excellent agreement with experimental values, indicating that DFT‐D is able to correctly capture the selectivity‐determining interactions of this system.  相似文献   

6.
A series of asymmetric catalysts composed of conformationally flexible amide‐based chiral ligands and rare‐earth metals was developed for proton‐transfer catalysis. These ligands derived from amino acids provide an intriguing chiral platform for the formation of asymmetric catalysts upon complexation with rare‐earth metals. The scope of this arsenal of catalysts was further broadened by the development of heterobimetallic catalytic systems. The cooperative function of hydrogen bonding and metal coordination resulted in intriguing substrate specificity and stereocontrol, and the dynamic nature of the catalysts led to a switch of their function. Herein, we summarize our recent exploration of this class of catalysts.  相似文献   

7.
《化学:亚洲杂志》2017,12(18):2335-2342
Chirality is an essential feature of asymmetric catalysts. This review summarizes asymmetric catalysts that derive their chirality exclusively from stereogenic metal centers. Reported chiral‐at‐metal catalysts can be divided into two classes, namely, inert metal complexes, in which the metal fulfills a purely structural role, so catalysis is mediated entirely through the ligand sphere, and reactive metal complexes. The latter are particularly appealing because structural simplicity (only achiral ligands) is combined with the prospect of particularly effective asymmetric induction (direct contact of the substrate with the chiral metal center). Challenges and solutions for the design of such reactive stereogenic‐only‐at‐metal asymmetric catalysts are discussed.  相似文献   

8.
Catalytic asymmetric carbon–carbon bond‐forming reactions provide one of the most efficient ways to synthesize optically active compounds, and, accordingly, many chiral catalysts for these reactions have been developed in the past two decades. However, the efficiency of the catalysts in terms of turnover number (TON) is often lower than that of some other reactions, such as asymmetric hydrogenation, and this has been one of the obstacles for industrial applications. Although there are some difficulties in increasing the efficiency, the issues might be solved by using continuous flow in the presence of chiral heterogeneous catalysts. Indeed, continuous‐flow systems have several advantages over conventional batch systems. Here we summarize the recent progress in asymmetric C? C bond‐forming reactions under continuous‐flow conditions with chiral heterogeneous catalysts.  相似文献   

9.
Systematic studies have been performed to develop highly efficient catalysts for the asymmetric aza‐Claisen rearrangement of trihaloacetimidates. Herein, we describe the stepwise development of these catalyst systems involving four different catalyst generations finally resulting in the development of a planar chiral pentaphenylferrocenyl oxazoline palladacycle. This complex is more reactive and has a broader substrate tolerance than all previously known catalyst systems for asymmetric aza‐Claisen rearrangements. Our investigations also reveal that subtle changes can have a big impact on the activity. With the enhanced catalyst activity, the asymmetric aza‐Claisen rearrangement has a very broad scope: the methodology not only allows the formation of highly enantioenriched primary allylic amines, but also secondary and tertiary amines; allylic amines with N‐substituted quaternary stereocenters are conveniently accessible as well. The reaction conditions tolerate many important functional groups, thus providing stereoselective access to valuable functionalized building blocks, for example, for the synthesis of unnatural amino acids. Our results suggest that face‐selective olefin coordination is the enantioselectivity‐determining step, which is almost exclusively controlled by the element of planar chirality.  相似文献   

10.
金属催化的不对称氢化反应研究进展与展望   总被引:1,自引:0,他引:1  
谢建华  周其林 《化学学报》2012,70(13):1427-1438
手性过渡金属络合物催化的不对称氢化反应是合成光学活性化合物的重要方法. 本文从手性配体及手性催化剂、不对称催化新反应、新方法和新策略三个方面简要评述新世纪以来过渡金属催化的不对称氢化反应研究领域的新进展. 从新世纪初至今, 手性单磷配体得到了复兴, 出现了如MonoPhos、SiPhos、DpenPhos等高效单齿亚磷酰胺酯配体; 磷原子手性(P-手性)配体也得到了快速发展, 如BenzP*、ZhanPhos、TriFer等已成为新的高效手性双膦配体; 螺环骨架手性配体成为新世纪手性配体设计合成的亮点, 除了SiPhos、SIPHOX、SpinPHOX等高效手性螺环配体外, 手性螺环吡啶胺基磷配体SpiroPAP的铱催化剂成为目前最高效的分子催化剂. 不对称催化氢化新反应研究也取得了突破, 如非保护烯胺、杂芳环化合物及N-H亚胺的氢化等反应都实现了高对映选择性. 自组装手性催化剂、树枝状手性催化剂、铁磁性纳米负载的可回收手性催化剂, 以及“混合”配体手性催化剂等新方法和新策略也在不对称催化氢化反应中得到了应用. 然而, 手性过渡金属络合物催化的不对称氢化研究仍然充满挑战, 也期待新的突破.  相似文献   

11.
The Nazarov cyclization of divinyl ketones gives access to cyclopentenones. Replacing one of the vinyl groups by a cyclopropane leads to a formal homo‐Nazarov process for the synthesis of cyclohexenones. In contrast to the Nazarov reaction, the cyclization of vinyl‐cyclopropyl ketones is a stepwise process, often requiring harsh conditions. Herein, we describe two different approaches for further polarization of the three‐membered ring of vinyl‐cyclopropyl ketones to allow the formal homo‐Nazarov reaction under mild catalytic conditions. In the first approach, the introduction of an ester group α to the carbonyl on the cyclopropane gave a more than tenfold increase in reaction rate, allowing us to extend the scope of the reaction to non‐electron‐rich aryl donor substituents in the β position to the carbonyl on the cyclopropane. In this case, a proof of principle for asymmetric induction could be achieved using chiral Lewis acid catalysts. In the second approach, heteroatoms, especially nitrogen, were introduced β to the carbonyl on the cyclopropane. In this case, the reaction was especially successful when the vinyl group was replaced by an indole heterocycle. With a free indole, the formal homo‐Nazarov cyclization on the C3 position of indole was observed using a copper catalyst. In contrast, a new cyclization reaction on the N1 position was observed with Brønsted acid catalysts. Both reactions were applied to the synthesis of natural alkaloids. Preliminary investigations on the rationalization of the observed regioselectivity are also reported.  相似文献   

12.
Chiral phosphines are versatile Lewis basic catalysts that are capable of promoting a wide range of asymmetric reactions. In particular, recently designed chiral phosphines based on the concept of bi‐/multifunctionality have been demonstrated to be effective catalysts for many types of asymmetric reactions, such as (aza)‐MBH reactions, cycloaddition reactions, and nucleophilic addition reactions. This short overview summarizes the recent advances in this field and highlights the most‐significant achievements.  相似文献   

13.
Chiral bis(oxazolinylphenyl)amines proved to be efficient auxiliary ligands for iron and cobalt catalysts with high activity for asymmetric hydrosilylation of ketones and asymmetric conjugate hydrosilylation of enones.  相似文献   

14.
The asymmetric synthesis of compounds that contain new C? C and C? O bonds remains one of the most important types of synthesis in organic chemistry. Over the years, many different types of catalysts have been designed and used effectively to carry out such transformations. Ionic‐liquid‐supported (ILS) catalysts represent a new and very effective class of catalysts that are used to facilitate the asymmetric synthesis of such compounds. There are many advantages to using ILS catalysts; they are nontoxic, environmentally benign, and, most important, recyclable. An overview of the design, synthesis, mode of action, and effectiveness of this class of catalysts is reported.  相似文献   

15.
The reactions of nitro and azo compounds with carbon monoxide were studied in the presence of iron carbonyl catalysts. It was shown that these catalytic systems differ substantially from Pd- and Rh-containing catalysts. In the case of the iron catalysts, the products of coupling of molecules are formed as intermediates and azo compounds are the final reaction products. The reactions involving the palladium and rhodium catalysts proceed without the intermediate formation of the coupling products and lead to isocyanates or carbamates. When combined using PdCl2 and Fe(CO)5/Al2O3, the catalysts inhibit each other, especially in the presence of pyridine.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2460–2463, October, 1996.  相似文献   

16.
Several types of chiral hetero‐ and carbocyclic compounds have been synthesized by using the asymmetric hydrogenation of cyclic alkenes. N,P‐Ligated iridium catalysts reduced six‐membered cyclic alkenes with various substituents and heterofunctionality in good to excellent enantioselectivity, whereas the reduction of five‐membered cyclic alkenes was generally less selective, giving modest enantiomeric excesses. The stereoselectivity of the hydrogenation depended more strongly on the substrate structure for the five‐ rather than the six‐membered cyclic alkenes. The major enantiomer formed in the reduction of six‐membered alkenes could be predicted from a selectivity model and isomeric alkenes had complementary enantioselectivity, giving opposite optical isomers upon hydrogenation. The utility of the reaction was demonstrated by using it as a key step in the preparation of chiral 1,3‐cis‐cyclohexane carboxylates.  相似文献   

17.
Oxygen‐ and nitrogen‐containing heterocyclic compounds are widely recognized as key components in many natural products and biologically relevant molecules, but often the problem comes down to methodologies in synthesizing them. Halocyclization of olefinic substrates is a promising strategy in the construction of O‐ and N‐heterocyclic compounds, which further signifies the development of their asymmetric variants. Over the past years, our group has been devoted to this particular area of asymmetric electrophilic halocyclization with chalcogen‐containing molecules as catalysts. In this account, the main focus is on the development of our novel chiral catalysts and applications derived from the reaction products.  相似文献   

18.
The enantioselective allylation of aldehydes to form homoallylic alcohols is one of the most frequently used carbon–carbon bond‐forming reaction in chemical synthesis and, for several decades, has been a testing ground for new asymmetric methodology. However, a general and highly enantioselective catalytic addition of the inexpensive, nontoxic, air‐ and moisture‐stable allyltrimethylsilane to aldehydes, the Hosomi–Sakurai 1 reaction, has remained elusive. 2 , 3 Reported herein is the design and synthesis of a highly acidic imidodiphosphorimidate motif (IDPi), which enables this transformation, thus converting various aldehydes with aromatic and aliphatic groups at catalyst loadings ranging from 0.05 to 2.0 mol % with excellent enantioselectivities. Our rationally constructed catalysts feature a highly tunable active site, and selectively process small substrates, thus promising utility in various other challenging chemical reactions.  相似文献   

19.
1,2,3‐Triazoles are unique heterocycles with intriguing physical properties that allow not only the coordination to metals, but also the establishment of supramolecular interactions based on their polarized C?H bonds. In this account, an extensive work of our group on the design and application of 1,2,3‐triazole catalysts is covered. Initially, a family of BINOL triazoles (Click‐BINOLs) was synthesized and employed in model test reactions in asymmetric metal catalysis such as the Ti‐catalyzed addition of alkylzinc reagents to aldehydes. The evolution from the Click‐BINOLs to a novel class of triazole‐based anion‐binding organocatalysts is further discussed. Consequently, these catalysts were successfully applied in alkylation reactions, as well as asymmetric dearomatizations of diverse N‐heteroarenes.  相似文献   

20.
The scarcity of precious metals has led to the development of sustainable strategies for metal‐catalyzed cross‐coupling reactions. The establishment of new catalytic methods using iron is attractive owing to the low cost, abundance, ready availability, and very low toxicity of iron. In the last few years, sustainable methods for iron‐catalyzed cross‐couplings have entered the critical area of pharmaceutical research. Most notably, iron is one of the very few metals that have been successfully field‐tested as highly effective base‐metal catalysts in practical, kilogram‐scale industrial cross‐couplings. In this Minireview, we critically discuss the strategic benefits of using iron catalysts as green and sustainable alternatives to precious metals in cross‐coupling applications for the synthesis of pharmaceuticals. The Minireview provides an essential introduction to the fundamental aspects of practical iron catalysis, highlights areas for improvement, and identifies new fields to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号