首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding and controlling multicomponent co‐assembly is of primary importance in different fields, such as materials fabrication, pharmaceutical polymorphism, and supramolecular polymerization, but these aspects have been a long‐standing challenge. Herein, we discover that liquid–liquid phase separation (LLPS) into ion‐cluster‐rich and ion‐cluster‐poor liquid phases is the first step prior to co‐assembly nucleation based on a model system of water‐soluble porphyrin and ionic liquids. The LLPS‐formed droplets serve as the nucleation precursors, which determine the resulting structures and properties of co‐assemblies. Co‐assembly polymorphism and tunable supramolecular phase transition behaviors can be achieved by regulating the intermolecular interactions at the LLPS stage. These findings elucidate the key role of LLPS in multicomponent co‐assembly evolution and enable it to be an effective strategy to control co‐assembly polymorphism as well as supramolecular phase transitions.  相似文献   

2.
3.
4.
Liquid–liquid phase separation (LLPS) is an intermediate step during the precipitation of calcium carbonate, and is assumed to play a key role in biomineralization processes. Here, we have developed a model where ion association thermodynamics in homogeneous phases determine the liquid–liquid miscibility gap of the aqueous calcium carbonate system, verified experimentally using potentiometric titrations, and kinetic studies based on stopped‐flow ATR‐FTIR spectroscopy. The proposed mechanism explains the variable solubilities of solid amorphous calcium carbonates, reconciling previously inconsistent literature values. Accounting for liquid–liquid amorphous polymorphism, the model also provides clues to the mechanism of polymorph selection. It is general and should be tested for systems other than calcium carbonate to provide a new perspective on the physical chemistry of LLPS mechanisms based on stable prenucleation clusters rather than un‐/metastable fluctuations in biomineralization, and beyond.  相似文献   

5.
The preparation of nonspherical materials composed of separated multicomponents by droplet‐based microfluidics remains a challenge. Based on polymerization‐induced phase separation and droplet coalescence in microfluidics, we prepared emulsions of variously shaped PAM/PEG core/shell droplets and hydrogels composed of two separated components, which show flexible and transformable hierarchical structures and microarchitectures. We find that AM/PEG aqueous droplets form a core/shell structure after polymerization resulting from phase separation. Thus multicore/shell droplets are easily produced by coalescence of core/shell structures. By changing the polymerization temperature and the flow rate, the morphology of the multicore droplets and the hydrogel can be easily adjusted. The hydrogels exhibit apparent anisotropy and different protein release rates depending on their structures. The preparation technique is simple and versatile and the resulting hydrogels have potential applications in many fields.  相似文献   

6.
7.
High‐internal‐phase Pickering emulsions have various applications in materials science. However, the biocompatibility and biodegradability of inorganic or synthetic stabilizers limit their applications. Herein, we describe high‐internal‐phase Pickering emulsions with 87 % edible oil or 88 % n‐hexane in water stabilized by peanut‐protein‐isolate microgel particles. These dispersed phase fractions are the highest in all known food‐grade Pickering emulsions. The protein‐based microgel particles are in different aggregate states depending on the pH value. The emulsions can be utilized for multiple potential applications simply by changing the internal‐phase composition. A substitute for partially hydrogenated vegetable oils is obtained when the internal phase is an edible oil. If the internal phase is n‐hexane, the emulsion can be used as a template to produce porous materials, which are advantageous for tissue engineering.  相似文献   

8.
Controllable generation of complex emulsions comprising exceptional features such as several compartments and shape anisotropy is becoming increasingly important. Complex emulsions are attracting great interest due to their significant potential in many applications, including foods, pharmaceuticals, cosmetics, materials, and chemical separations. Microfluidics is emerging as a promising route to the generation of complex emulsions, providing precise control over emulsion shape, size, and compartments. The aim of this Minireview is to mainly describe the progress of microfluidic approaches to design complex emulsions using hydrodynamic control and phase separation. The emulsions formed are classified according to their morphology, anisotropy, and internal structure. Emerging applications of complex emulsions formed using these microfluidic techniques are discussed.  相似文献   

9.
《Analytical letters》2012,45(17):2864-2878
Abstract

In low-energy emulsification processes, phase inversion occurs when the phases of a dispersion exchange, because of changes in the medium's properties. This paper reports experiments to determine the phase inversion temperature (PIT) of orange oil/water emulsions stabilized by nonionic surfactants. Two techniques were employed: rheology, which is already commonly used to obtain the PIT, and microcalorimetry, which has been proposed as a new technique. Continuous monitoring of the emulsions' viscosity permitted identifying different phenomena that occur while the temperature varies. For all the dispersions prepared, the rheological curves obtained showed two peaks, one attributed to the phase separation process and the other to the phase inversion phenomenon. The microcalorimetry technique showed two endothermic transitions as the dispersion's temperature increased. The initial temperatures were comparable to those obtained by rheology. The influence of the surfactant concentration and the hydrophilic-lipophilic balance (HLB) of the mixture of surfactants and the reduction in volume of the phases at the phase inversion temperature were also evaluated. In general, both methods used to evaluate the phase inversion of the orange oil/water systems (rheology and microcalorimetry) presented concordant results, both for the phase separation process and the phase inversion temperature.  相似文献   

10.
11.
The phase separation processes occurring in polyurethane/DMSO/water mixtures were studied using DSC and cloud point measurements. It is demonstrated that liquid–liquid demixing occurs in ternary solutions of segmented polyesterurethanes at sufficiently high water concentrations. It is also shown that the hard segment can crystallize from solution when cooled to room temperature; while if the mixture is cooled to sufficiently low temperatures, DMSO partially freezes, which also induces crystallization of the soft segment. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 716–723, 2005  相似文献   

12.
The phase behavior of ternary systems (either a polymer solution in a mixed solvent or a polymer blend in a single solvent) was modeled theoretically. The modeling considers two specific features of polymers explicitly: chain connectivity and the ability to respond to changes in the molecular environment by conformational reorientation. Previously, this approach has been applied to polymer solutions in single solvents. Here it is generalized and the number of parameters is reduced to two per binary system. The calculation of the Gibbs energies of the ternary mixtures accounts for the composition dependencies of the binary interaction parameters. The following phenomena are reproduced realistically for polymer solutions in a mixed solvent and for solutions of two polymers in a common solvent: simplicity, co‐solvency, and co‐non‐solvency. The results nourish the hope that the new approach is capable of modeling phase diagrams for ternary systems by means of binary interaction parameters only.

  相似文献   


13.
Significant advances have been made in establishing phase behavior of a number of nonionic, cationic, anionic, catanionic and fluorinated surfactants in water. An interest in phase equilibria existing at sub-ambient temperatures is developing. The study of cubic, intermediate, defective lamellar and sponge phases is an active field of research at present. Further work is needed in exploring thermodynamic stability of rigid nanodisks and densely packed vesicles. Colloidal aspects, thermodynamic and volumetric properties of the surfactant-containing systems deserve special attention.  相似文献   

14.
Summary: Organisation behaviours of spherical particles suspended in sheared, lyotropic, liquid‐crystalline polymer solutions have been investigated using polarizing optical microscopy. We find that in a nematic phase the particles phase separate and adopt anisotropic chain‐like structures along the director. An earring defect is observed around a single particle whereas a cross or strings defect between neighbouring particles is found to serve as a repulsive barrier to prevent the particles from contacting each other. A theoretical analysis is presented to explain this new phenomenon.

An optical micrograph of 0.01 wt.‐% glass spheres suspended in a nematic solution of 40 wt.‐% ethyl cellulose in chloroform under an external shear force.  相似文献   


15.
The phase diagram of a series of poly(1,2‐octylene oxide)–poly(ethylene oxide) (POO–PEO) diblock copolymers is determined by small‐angle X‐ray scattering. The Flory–Huggins interaction parameter was measured by small‐angle neutron scattering. The phase diagram is highly asymmetric due to large conformational asymmetry that results from the hexyl side chains in the POO block. Non‐lamellar phases (hexagonal and gyroid) are observed near fPEO = 0.5, and the lamellar phase is observed for fPEO ≥ 0.5.

  相似文献   


16.
Colloidal microcapsules (MCs) are highly modular, inherently multiscale constructs of capsules stabilized by nano‐/microparticle shells, with applications in many areas of materials and biological sciences, such as drug delivery, encapsulation, and microreactors. Until recently, fabrication of colloidal MCs focused on the use of submicron‐sized particles because the smaller nanoparticles (NPs) are inherently unstable at the interface owing to thermal disorder. However, stable microcapsules can now be obtained by tuning the interactions between the nanometer‐sized building blocks at the liquid–liquid interface. This Review highlights recent developments in the fabrication of colloidal MCs using NPs.  相似文献   

17.
18.
The recently introduced one-step process to form double emulsions is analyzed using generalized phase diagrams of water, ethylene oxide adduct surfactants, and hydrocarbons. With the process used, we found three factors to be involved in the successful formation of double emulsions. Temporary ultra-low interfacial tension allowed drops of irregular shape to exist, a large part of the emulsion formed a bicontinuous microemulsion at intermediate times, and the interfacial tension was temporarily reduced extremely by significant amounts of all three compounds transferred over the interfaces in different directions depending on the stage of the process.  相似文献   

19.
Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) receives increasing attention in membrane separation field based on its advantages such as high mechanical strength, thermal and chemical stability. However, controlling the microporous structure is still challenging.In this work, we attempted to tailor the morphology of PVDF-HFP membrane via a one-step reactive vapor induced phase separation method.Namely, PVDF-HFP was dissolved in a volatile solvent and then was cast in an ammonia water vapor atmosphere. After complete evaporation of solvent, membranes with adjustable porous structure were prepared, and the microstructures of the membranes were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction characterizations. Based on the results, a mechanism of dehydrofluorination induced cross-linking of PVDF-HFP has been suggested to understand the morphology tailoring.To our knowledge, this is the first report of one-step reactive vapor induced phase separation strategy to tailor morphology of PVDF-HFP membrane. In addition, the membranes prepared in the ammonia water vapor exhibited enhanced mechanical strength and achieved satisfactory separation efficiency for water-in-oil emulsions, suggesting promising potential.  相似文献   

20.
We have developed a new Flory‐Huggins model by adding a specific interaction parameter derived from a modified double‐lattice model for the Helmholtz energy of mixing for binary liquid mixtures. This model is very simple and could be easily integrated into engineering applications. Using this revised model, we can successfully describe the phase behavior of polymer solutions with an upper critical solution temperature (UCST), a lower critical solution temperature (LCST), both UCST and LCST, and a closed miscibility loop. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 162–167, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号