首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Reactions of the zinc(I) complex [Zn2(Mesnacnac)2] (Mesnacnac=[(2,4,6‐Me3C6H2)NC(Me)]2CH) with solid K3Bi2 dissolved in liquid ammonia yield crystals of the compound K4[ZnBi2]⋅(NH3)12 ( 1 ), which contains the molecular, linear heteroatomic [Bi Zn Bi]4− polyanion ( 1 a ). This anion represents the first example of a three‐atomic molecular ion of metal atoms being iso(valence)‐electronic to CO2 and being synthesized in solution. The analogy of the discrete [Bi Zn Bi]4− anion and the polymeric [(ZnBi4/2)4−] unit to monomeric CO2 and polymeric SiS2 is rationalized.  相似文献   

2.
The new [SnBi3]5− polyanion is obtained by the reaction of K3Bi2 with K4Sn9 or K12Sn17 in liquid ammonia. The anion is iso(valence)electronic with and structurally analogous to the carbonate ion. Despite the high negative charge of the anion, the Sn−Bi bond lengths range between single and double bonds. Quantum‐chemical calculations at a DFT‐PBE0/def2‐TZVPP/COSMO level of theory reveal that the partial double bond character between the heavy main‐group atoms Bi and Sn originates from a delocalized π‐electronic system. The structure of the anion is determined by single‐crystal X‐ray diffraction analyses of the compounds K5[SnBi3] 9 NH3 ( 1 ) and K9[K(18‐crown‐6)][SnBi3]2⋅15 NH3 ( 2 ). The [SnBi3]5− unit is the first example of a carbonate‐like anion obtained from solution, and it consists exclusively of metal atoms and completes the series of metal analogues of CO and CO2.  相似文献   

3.
Reactions of ZnI2L2 (where L=[HC(PPh2NPh)]) with solutions of the Zintl phase K4Ge9 in liquid ammonia lead to retention of the Zn−Zn bond and formation of the anion [(η4‐Ge9)Zn−Zn(η4‐Ge9)]6−, representing the first complex with a Zn−Zn unit carrying two cluster entities. The trimeric anion [(η4‐Ge9)Zn{μ211Ge9)}Zn(η4‐Ge9)]8− forms as a side product, indicating that oxidation reactions also take place. The reaction of Zn2Cp*2 (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with K4Ge9 in ethylenediamine yielded the linear polymeric unit {[Zn[μ241Ge9)]}2− with the first head‐to‐tail arrangement of ten‐atom closo ‐clusters. All anions were obtained and structurally characterized as [A (2.2.2‐crypt)]+ salts (A =K, Rb). Copious computational analyses at a DFT‐PBE0/def2‐TZVPP/PCM level of theory confirm the experimental structures and support the stability of the two hypothetical ten vertex cluster fragments closo ‐[Ge9Zn]2− and (paramagnetic) [Ge9Zn]3−.  相似文献   

4.
Polymeric [Bi]? in KBi?NH3 has planar zigzag chains with two‐connected Bi atoms and metallic properties, whereas KBi, which has helical chains of Bi atoms, is semiconducting. The isomerization of the Bi chain is induced by solvate molecules. In the novel layered solvate structure uncharged [KBi] layers are separated by intercalated NH3 molecules. These layers are a structural excerpt of the iso(valence)electronic CaSi, whose metallic properties arise from the planarity of the zigzag chain of Si atoms. Computational studies support this view, they show an anisotropic metallic behavior along the Bi chain. Electron delocalization is also found in the new cyclic anion [Bi6]4? isolated in K2[K(18‐crown‐6)]2[Bi6]?9 NH3. Although [Bi6]4? should exhibit one localized double bond, electron delocalization is observed in analogy to the lighter homologues [P6]4? and [As6]4?. Both compounds were characterized by single‐crystal X‐ray structure determination.  相似文献   

5.
From the dark‐purple solution of the Zintl phase KBi in liquid ammonia dark‐blue crystals of the ammonia solvate K6[Bi4](NH3)8 were obtained. In contrast to known Bin polyanions the chemical bond in the anion [Bi4]6– is in accordance with the (8‐N) rule featuring solely Bi–Bi single bonds. [Bi4]6– is a butane‐analog valence compound, and with 6 negative charges per 4 atoms it is the anion with the highest known charge per atom obtained from solution. The planarity of the trans‐[Bi4]6– unit hints at π orbital contributions of the bismuth atoms. The corresponding reactions of the phases K5Bi4 and K3Bi2 in liquid ammonia in the presence of [2.2.2]crypt(4, 7, 13, 16, 21, 24‐hexaoxa‐1, 10‐diazabicyclo‐[8.8.8]hexacosane) lead to the salt [K([2.2.2]crypt)]2[Bi2](NH3)4 with the known electron‐deficient [Bi2]2– polyanion and a Bi=Bi double bond.  相似文献   

6.
Reactions of the tris(3,5‐dimethylpyrazolyl)methanide amido complexes [M′{C(3,5‐Me2pz)3}{N(SiMe3)2}] (M′=Mg ( 1 a ), Zn ( 1 b ), Cd ( 1 c ); 3,5‐Me2pz=3,5‐dimethylpyrazolyl) with two equivalents of the acidic Group 6 cyclopentadienyl (Cp) tricarbonyl hydrides [MCp(CO)3H] (M=Cr ( 2 a ), Mo ( 2 b )) gave different types of heterobimetallic complex. In each case, two reactions took place, namely the conversion of the tris(3,5‐dimethylpyrazolyl)methanide ligand (Tpmd*) into the ‐methane derivative (Tpm*) and the reaction of the acidic hydride M?H bond with the M′?N(SiMe3)2 moiety. The latter produces HN(SiMe3)2 as a byproduct. The Group 2 representatives [Mg(Tpm*){MCp(CO)3}2(thf)] ( 3 a / b ) form isocarbonyl bridges between the magnesium and chromium/molybdenum centres, whereas direct metal–metal bonds are formed in the case of the ions [Zn(Tpm*){MCp(CO)3}]+ ( 4 a / b ; [MCp(CO)3]? as the counteranion) and [Cd(Tpm*){MCp(CO)3}(thf)]+ ( 5 a / b ; [Cd{MCp(CO)3}3]? as the counteranion). Complexes 4 a and 5 a / b are the first complexes that contain Zn?Cr, Cd?Cr, and Cd?Mo bonds (bond lengths 251.6, 269.8, and 278.9 pm, respectively). Quantum chemical calculations on 4 a / b* (and also on 5 a / b* ) provide evidence for an interaction between the metal atoms.  相似文献   

7.
Borosulfates are an ever‐expanding class of compounds and the extent of their properties is still elusive. Herein, the first two copper borosulfates Cu[B2(SO4)4] and Cu[B(SO4)2(HSO4)] are presented, which are structurally related but show different dimensionalities in their substructure: While Cu[B2(SO4)4] reveals an anionic chain, [B(SO4)4/2]?, with both a twisted and a unique chair conformation of the B(SO4)2B subunits, Cu[B(SO4)2(HSO4)] reveals isolated [B2(SO4)4(HSO4)2]4? anions showing exclusively a twisted conformation. The complex anion can figuratively be obtained as a cut‐out from the anionic chain by protons. Comparative DFT calculations based on magnetochemical measurements complement the experimental studies. Calculation of the pKa values of the two conformers of the [B2(SO4)4(HSO4)2]4? anion revealed them to be more similar to silicic than to sulfuric acid, highlighting the close relationship to silicates.  相似文献   

8.
Carbon–carbon bond reductive elimination from gold(III) complexes are known to be very slow and require high temperatures. Recently, Toste and co‐workers have demonstrated extremely rapid C?C reductive elimination from cis‐[AuPPh3(4‐F‐C6H4)2Cl] even at low temperatures. We have performed DFT calculations to understand the mechanistic pathway for these novel reductive elimination reactions. Direct dynamics calculations inclusive of quantum mechanical tunneling showed significant contribution of heavy‐atom tunneling (>25 %) at the experimental reaction temperatures. In the absence of any competing side reactions, such as phosphine exchange/dissociation, the complex cis‐[Au(PPh3)2(4‐F‐C6H4)2]+ was shown to undergo ultrafast reductive elimination. Calculations also revealed very facile, concerted mechanisms for H?H, C?H, and C?C bond reductive elimination from a range of neutral and cationic gold(III) centers, except for the coupling of sp3 carbon atoms. Metal–carbon bond strengths in the transition states that originate from attractive orbital interactions control the feasibility of a concerted reductive elimination mechanism. Calculations for the formation of methane from complex cis‐[AuPPh3(H)CH3]+ predict that at ?52 °C, about 82 % of the reaction occurs by hydrogen‐atom tunneling. Tunneling leads to subtle effects on the reaction rates, such as large primary kinetic isotope effects (KIE) and a strong violation of the rule of the geometric mean of the primary and secondary KIEs.  相似文献   

9.
The protonation constants of 2‐[4,7,10‐tris(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecan‐1‐yl]acetic acid (H7DOA3P) and of the complexes [Ln(DOA3P)]4? (Ln=Ce, Pr, Sm, Eu, and Yb) have been determined by multinuclear NMR spectroscopy in the range pD 2–13.8, without control of ionic strength. Seven out of eleven protonation steps were detected (pK =13.66, 12.11, 7.19, 6.15, 5.77, 2.99, and 1.99), and the values found compare well with the ones recently determined by potentiometry for H7DOA3P, and for other related ligands. The overall basicity of H7DOA3P is higher than that of H4DOTA and trans‐H6DO2A2P but lower than that of H8DOTP. Based on multinuclear‐NMR spectroscopy, the protonation sequence for H7DOA3P was also tentatively assigned. Three protonation constants (pKMHL, pKMH2L, and pKMH3L) were determined for the lanthanide complexes, and the values found are relatively high, although lower than the protonation constants of the related ligand (pK , pK , and pK ), indicating that the coordinated phosphonate groups in these complexes are protonated. The acid‐assisted dissociation of [Ln(DOA3P)]4? (Ln=Ce, Eu), in the region cH+=0.05–3.00 mol dm?3 and at different temperatures (25–60°), indicated that they have slightly the same kinetic inertness, being the [Eu(H2O)9]3+ aqua ion the final product for europium. The rates of complex formation for [Ln(DOA3P)]4? (Ln=Ce, Eu) were studied by UV/VIS spectroscopy in the pH range 5.6–6.8. The reaction intermediate [Eu(DOA3P)]* as ‘out‐of‐cage’ complex contains four H2O molecules, while the final product, [Eu(DOA3P)]4?, does not contain any H2O molecule, as proved by steady‐state/time‐resolved luminescence spectroscopy.  相似文献   

10.
The reaction of the N‐thiophosphorylated thiourea (HOCH2)(Me)2CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L‐1,5‐S,S′)2] ? 0.5 (n‐C6H14) or pale green blocks of the trans square‐planar complex trans‐[Ni(L‐1,5‐S,S′)2]. The former complex is stabilized by homopolar dihydrogen C?H???H?C interactions formed by n‐hexane solvent molecules with the [Ni(L‐1,5‐S,S′)2] unit. Furthermore, the dispersion‐dominated C?H??? H?C interactions are, together with other noncovalent interactions (C?H???N, C?H???Ni, C?H???S), responsible for pseudotetrahedral coordination around the NiII center in [Ni(L ‐1,5‐S,S′)2] ? 0.5 (n‐C6H14).  相似文献   

11.
The synthesis, structure, and reactivity of stable homoleptic heterometallic LnL4K2 complexes of divalent lanthanide ions with electron‐rich tris(tert‐butoxy)siloxide ligands are reported. The [Ln(OSi(OtBu)3)4K2] complexes (Ln=Eu, Yb) are stable at room temperature, but they promote the reduction of azobenzene to yield the KPhNNPh radical anion as well as the reductive cleavage of CS2 to yield CS32? as the major product. The EuIII complex of the radical anion PhNNPh is structurally characterized. Moreover, [Yb(OSi(OtBu)3)4K2] can reduce CO2 at room temperature. Release of the reduction products in D2O shows the quantitative formation of both oxalate and carbonate in a 1:2.2 ratio. The bulky siloxide ligands enforce the labile binding of the reduction products providing the opportunity to establish a closed synthetic cycle for the YbII‐mediated CO2 reduction. These studies show that the presence of four electron‐rich siloxide ligands renders their EuII and YbII complexes highly reactive.  相似文献   

12.
The mechanism of the spin‐forbidden quenching process O(1D) + CO2(1Σ) → O(3P) + CO2(1Σ) was investigated by ab initio quantum chemistry methods. The calculations showed the singlet potential surface [O(1D)+CO2] is attractive where a strongly bound intermediate complex CO3 is formed in the potential basin without a transition state, whereas the complex CO3 that is formed on the triplet surface [O(3P)+CO3] must overcome a barrier. The complex channel was documented by searching minimum energy intersection points in the region of the bound complex CO3 and calculating spin‐orbit coupling at the point. A direct channel was proposed by a study of cross point of singlet and triplet PESs with different collision angles and calculations of spin‐orbit coupling at those cross points in a nonbound region of the [O(1D)+CO3] system. The mechanism of the energy transfer is discussed on the basis of the theoretical results. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

13.
This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η5‐C5Me5)IrIII fragment. The new complexes have the chemical composition [Ir(Ap)(η5‐C5Me5)]+, exist in the form of two isomers ( 1+ and 2+ ) and were isolated as salts of the BArF? anion (BArF=B[3,5‐(CF3)2C6H3]4). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2, the electrophilicity of the IrIII centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well‐known κ2‐N,N′‐bidentate binding in 1+ and the unprecedented κ‐N3‐pseudo‐allyl‐coordination mode in isomers 2+ through activation of a benzylic C?H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H?H, C?H and N?H bonds, is catalysed by dihydrogen under homogeneous conditions.  相似文献   

14.
The extraction of the silicide K12Si17 with liquid ammonia in the presence of a sequestering agent and AuPPh3Cl or Zn(Cp*)2 led to crystals of the solvate compound K8[Si4][Si9] · (NH3)14.6, which was characterized by single‐crystal X‐ray diffraction. It is the first compound with an isolated and ligand‐free [Si4]4– cluster obtained from solution. It also contains one [Si9]4– cluster per formula unit, whereas the precursor K12Si17 is built from [Si4]4– and [Si9]4– clusters with a 2:1 ratio.  相似文献   

15.
Metallacyclic complex [(Me2N)3Ta(η2‐CH2SiMe2NSiMe3)] ( 3 ) undergoes C?H activation in its reaction with H3SiPh to afford a Ta/μ‐alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(μ‐H)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 4 ). Deuterium‐labeling studies with [D3]SiPh show H–D exchange between the Ta?D ?Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(μ‐D)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]‐ 4 ) to give the partially deuterated complex [Dn]‐ 4 . In addition, 4 undergoes β‐H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3Si)2N}Ta(μ‐H)(μ‐N‐η2‐C,N‐CH2NMe)(μ‐C‐η2‐C,N‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 5 ) with a cyclometalated, η2‐imine ligand. These results indicate that there are two simultaneous processes in [Dn]‐ 4 : 1) H–D exchange through σ‐bond metathesis, and 2) H?D elimination through β‐H abstraction (to give [Dn]‐ 5 ). Both 4 and 5 have been characterized by single‐crystal X‐ray diffraction studies.  相似文献   

16.
In the title compound, (C10H9NOS6)K[Hg(SCN)4] or (EDT–TTF–CONHMe)K[Hg(SCN)4)], fully oxidized organic (EDT–TTF–CONHMe) radical cations form quasi‐one‐dimensional stacks running along the monoclinic 21 axis and alternating along the crystallographic [101] direction with inorganic anion stacks made from mixed K+–[Hg(SCN)4]2− ribbons. For each anion, three essentially collinear SCN ligands inter­act with the K+ ions via short N⋯K contacts, while the terminal N atom of the fourth SCN group is engaged in a number of hydrogen‐bond contacts with the –CH, –NH and –CH2 hydrogen‐bond donors of the amide function. Radical cations are dimerized along the stacks and the crystal conductivity is activated.  相似文献   

17.
The title double salt, [Ni(C2H8N2)3]2(SbS4)(NO3), was crystallized under solvothermal conditions. Hydro­gen bonds between the SbS43? anions (at four sites) and the [Ni(en)3]2+ (en = ethyl­enedi­amine) cations (at two sites) form a three‐dimensional network. The NO3? anion is disordered over four sites. The cation lies on a twofold rotation axis and the SbS43? anion on a axis.  相似文献   

18.
The title compounds are salts of the general form (Q+)2[Zn(dmit)2]2?, where dmit corresponds to the ligand (C3S5)? present in both and Q+ to the counter‐cations (nBu4N)+ [or C16H36N+] and (Ph4As)+ [or C24H20As+], respectively. In the first case, Zn is in the 4e special positions of space group C2/c and hence the [Zn(dmit)2]2? dianion possesses twofold axial crystallographic symmetry. Including these, there are now 11 known examples of [Zn(dmit)2]2? or its analogues, with O replacing the exocyclic thione S, and [Zn(dmio)2]2? dianions in nine structures with various Q. Comparison of these reveals a remarkable variation in details of the conformation which the dianion may adopt in terms of Zn coordination, equivalence of the Zn—S bond lengths, displacement of Zn from the plane of the ligand and overall dianion shape.  相似文献   

19.
The polynuclear copper(II) complex [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2]n, 1 is bridged by ClDHBQ?2 (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone dianionic) and 2,2′‐dipyridylamine (Hdpa). In the axial position, Cu is connected with the oxygen atom of ClO. The perchlorate anion may be envisaged as a monodentate O‐bound ligand. Through the bond bridge of O–Cu … O–Cl, the binuclear compound [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2] is strung together into a long chain compound. Tetrachlorocatechol underwent partial oxidation/hydrolysis/dechlorination processes to produce ClDHBQ?2. The other mononuclear complex [Cu(Hdpa)(TeCQ)](DMF), 2 , in which tetrachloroquinone (TeCQ) was produced by oxidation of tetrachlorocatechol (TeCC), therefore complex 2 is in the quinone form. The magnetic susceptibility measurements show antiferromagnetic coupling with J = ?11.9 cm?1, θ = 2.6 K, and g = 2.05 for complex 1. Complex 2 exhibits the typical paramagnetic behavior of s = 1/2.  相似文献   

20.
Preparation and Electronic Spectra of new Trithiocarbonato Complexes; Structure, Properties, and Photoelectronic Spectra of Ni(NH3)3CS3 and Zn(NH3)2CS3 The complex anions [Zn(CS3)2]2?, [Cd(CS3)2]2?, [Co(CS3)3]3?, [Cr(CS3)3]3?, [As(CS3)3]3?, [Sb(CS3)3]3?, [Bi(CS3)3]3?, [Sn(CS3)2]2?, and [Cu(CS3)] could be isolated as tetraphenylphosphonium and tetraphenylarsonium salts. From the electronic spectra of the transition metal complexes it follows that the CS ion exhibits, in comparison with other sulfur containing ligands, relatively large Δ-values and only a small nephelauxetic effect (e.g. in [Cr(CS3)3]3?: Δ = 16.0 kK; β35 = 0.57). The trithiocarbonate ion in all the above complexes acts as a bidentate ligand and forms fourmembered ring systems CS2M. Further it was proved by means of infrared, electronic and photoelectronic spectra that the structure of “Ni(NH3)3CS3” is [Ni(NH3)6][Ni(CS3)2] whereas Zn(NH3)2CS3 has not such an ionic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号