首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of water adsorption equilibrium and kinetics in Takeda carbon molecular sieve (CMS) were undertaken in an effort to characterize fundamental mechanisms of adsorption and transport. Adsorption equilibrium revealed a type III isotherm that was characterized by cooperative multimolecular sorption theory. Water adsorption was found to be reversible and did not display hysteresis upon desorption over the conditions studied. Adsorption kinetics measurements revealed that a Fickian diffusion mechanism governed the uptake of water and that the rate of adsorption decreased with increasing relative pressure. Previous investigations have attributed the observed decreasing trend in the rate of adsorption to blocking of micropores. Here, it is proposed that the decrease is attributed to the thermodynamic correction to Fick's law which is formulated on the basis of the chemical potential as the driving force for transport. The thermodynamically corrected formulation accounted for observations of transport of water and other molecules in CMS.  相似文献   

2.
The present work aims to establish a generic reforming reaction scheme to evaluate the performance of catalytic reforming systems with the aid of a one‐dimensional heterogeneous dynamic model. The novelty of the numerical model stems from the direct inclusion of interphase (fluid‐to‐particle surface), intraparticle (within particle), and intrareactor heat and mass transport resistances under transient conditions. The developed model accounts for the multicomponent gas mixture physicochemical properties and correlations for calculating mass and heat transfer coefficients. Effective macroscopic properties within the particle are calculated by incorporating diffusivities and conductivities of the porous network characteristics accounting for Knudsen and molecular transport as well as tortuosity and porosity of the overall porous path. The industrial case of a steam‐methane reforming multitubular reactor was studied as the most representative case of the generic reaction scheme, with all mass/energy resistances present under severe pressure and temperature conditions. It was shown that there are notable diffusional limitations within the particle, whereas there are also temperature and partial pressure gradients due to the heat and mass transport resistances in the particle film layer. It is further demonstrated that the proposed model can be utilized as a versatile design tool for catalytic reactor development and optimization.  相似文献   

3.
We present a novel easy‐to‐operate and efficient method to improve the separation efficiency in short‐capillary electrophoresis by introducing steady backflow to counterbalance electro‐osmotic flow without the use of any external pressure. The backflow was easily generated by tapering the capillary end, which was achieved by heating a straight capillary and stretching it with a constant force. We investigated the net fluidic transport rate under different tip lengths and separation voltages. Good run‐to‐run repeatability and capillary‐to‐capillary reproducibility of the present method were obtained with RSD less than 1.5%, indicating the stability of the fluid transport rate in the tapered capillary, which ensures the quantification and repeatability of capillary zone electrophoresis (CZE) analysis. Enhanced separation of the tapered short capillary electrophoresis was demonstrated by CZE analyzing amino acids and positional isomers. Baseline separations were achieved in less than 60 s using a tapered capillary with the effective length of 5 cm, while no separation was achieved using a normal capillary without a tapered tip. The present study provides a promising method to use pressure‐driven backflow to enhance separation efficiency in short‐capillary electrophoresis, which would be of potential value in a wide application for fast analysis of complex samples.  相似文献   

4.
We investigate the transport of immiscible binary fluid layers, constituted by one conducting (top layer fluid) and another non‐conducting (bottom layer fluid) fluids in a microfluidic channel under the combined influences of an applied pressure gradient and imposed electric field. We solve the transport equation governing the flow dynamics analytically and obtain the closed‐form expressions of the velocity fields. We bring out the alteration in the flow dynamics, mainly attributable to the non‐linear interaction between interfacial slip and the electrical double layer effect over small scales as modulated by the applied pressure gradient. In particular, we show the augmentation in the net volume transport rate through the channel, emerging from an intricate competition among electrical forcing, applied pressure gradient and the viscous resistance as modulated by the interfacial slip. We believe that the results of this study may be of immense consequence for the design of various microfluidic devises, which are often used for the manipulation of two immiscible fluids in different biomedical/biochemical processes.  相似文献   

5.
The tentative evaluation of the linear phenomenological coefficients relative to the non-isothermal facilitated transport of orthoboric acid in solution (liquid system) and carbon dioxide (gas) through synthetic ion exchange membranes, using counterions as carriers, was investigated. In the absence of significant volume flow or electromigration, linear flux equations for heat and mass transport as a function of the two driving forces, heat and chemical potential gradients, were proposed. Constant or linearly dependent direct and cross phenomenological coefficients were evaluated considering the difference of non-isothermal and isothermal transports. Moreover it was shown that for facilitated mechanisms without leakage, all the coefficients can be predicted from a single coefficient, e.g. from the isothermal mass flux, if the heat of association ΔH of the carrier with the transported species is known. Amplification of flux, antagonism of the forces, heat or mass pumps were described and compared with existing data including predictions based on equilibria. Efficient second generation experimentation is proposed.  相似文献   

6.
Clathrates have been proposed for use in a variety of applications including gas storage, mixture separation and catalysis due to the potential for controlled guest diffusion through their porous lattices. Here molecular dynamics simulations are employed to study guest transport in clathrates of hydroquinone (HQ) and Dianin’s compound (DC). Systems investigated were HQ with methanol and acetonitrile, and DC with methanol and ethanol. Simulations were set up with one guest in the pore, two guests in the pore and one vacancy in the pore and a filled pore, and free‐energy barriers for movement between cavities of the pore were estimated for all cases. Comparison between these simulations indicates that guest transport most likely proceeds by molecules moving from full to empty cavities consecutively, one by one, rather than in a concerted manner. Thus, the presence of empty cavities is very important for guest transport, which becomes more energetically demanding in fully loaded systems. Flexibility of the host can assist guest transport. In the studied DC clathrates transport occurs via an intermediate conformation in which the hydroxyl group of the alcohol guest molecule participates in the hydrogen‐bonded ring of the host. We also address the issue of the number of methanol guest molecules that DC accommodates, for which conflicting information exists. We found that this is likely to be temperature dependent and suggest that under some conditions the system is most likely non‐stoichiometric.  相似文献   

7.
Xiangchun Xuan 《Electrophoresis》2019,40(18-19):2484-2513
Microfluidic devices have been extensively used to achieve precise transport and placement of a variety of particles for numerous applications. A range of force fields have thus far been demonstrated to control the motion of particles in microchannels. Among them, electric field‐driven particle manipulation may be the most popular and versatile technique because of its general applicability and adaptability as well as the ease of operation and integration into lab‐on‐a‐chip systems. This article is aimed to review the recent advances in direct current (DC) (and as well DC‐biased alternating current) electrokinetic manipulation of particles for microfluidic applications. The electric voltages are applied through electrodes that are positioned into the distant channel‐end reservoirs for a concurrent transport of the suspending fluid and manipulation of the suspended particles. The focus of this review is upon the cross‐stream nonlinear electrokinetic motions of particles in the linear electroosmotic flow of fluids, which enable the diverse control of particle transport in microchannels via the wall‐induced electrical lift and/or the insulating structure‐induced dielectrophoretic force.  相似文献   

8.
Charge transport and separation in mechanically-driven, droplet-based ion sources are investigated using computational analysis and supporting experiments. A first-principles model of electrohydrodynamics (EHD) and charge migration is formulated and implemented using FLUENT CFD software for jet/droplet formation. For validation, classical experiments of electrospraying from a thin capillary are simulated, specifically, the transient EHD cone-jet formation of a fluid with finite electrical conductivity, and the Taylor cone formation in a perfectly electrically-conducting fluid. The model is also used to investigate the microscopic physics of droplet charging in mechanically-driven droplet-based ion sources, such as array of micromachined ultrasonic electrospray (AMUSE). Here, AMUSE is subject to DC and AC electric fields of varying amplitude and phase, with respect to a time-varying mechanical force driving the droplet formation. For the DC-charging case, a linear relationship is demonstrated between the charge carried by each droplet and an applied electric field magnitude, in agreement with previously reported experiments. For the AC-charging case, a judiciously-chosen phase-shift in the time-varying mechanical (driving ejection) and electrical (driving charge transport) signals allows for a significantly increased amount of charge, of desired polarity, to be pumped into a droplet upon ejection. Complementary experimental measurements of electrospray electrical current and charge-per-droplet, produced by the AMUSE ion source, are performed and support theoretical predictions for both DC- and AC-charging cases. The theoretical model and simulation tools provide a versatile and general analytical framework for fundamental investigations of coupled electrohydrodynamics and charge transport. The model also allows for the exploration of different configurations and operating modes to optimize charge separation in atmospheric pressure electrohydrodynamic ion sources under static and dynamic electrical and mechanical fields.  相似文献   

9.
Constructing heterostructures can endow materials with fascinating performance in high‐speed electronics, optoelectronics, and other applications owing to the built‐in charge‐transfer driving force, which is of benefit to the specific charge‐transfer kinetics. Rational design and controllable synthesis of nano‐heterostructure anode materials with high‐rate performance, however, still remains a great challenge. Herein, ultrafine SnS/SnO2 heterostructures were successfully fabricated and showed enhanced charge‐transfer capability. The mobility enhancement is attributed to the interface effect of heterostructures, which induces an electric field within the nanocrystals, giving them much lower ion‐diffusion resistance and facilitating interfacial electron transport.  相似文献   

10.
We study dispersion of a charged solute in a charged micro‐ and nanochannel with reversible sorption and derive an analytical solution for mass fraction in the fluid, transport velocity and dispersion coefficient. Electrical double layer formed on the charged surface gives rise to a charge‐dependent solute transport by modifying the transverse distribution of the solute. We discuss the effect of sorption and electrical double layer on solute transport and show that the coupling between sorption and electrical double layer gives rise to charge‐dependent transport even for a thin double layer. However, in this case, it can be reduced to a simple non‐charge‐dependent case by introducing the intrinsic sorption equilibrium constant.  相似文献   

11.
12.
Study of the deformation dynamics of cells and other sub‐micron vesicles, such as virus and neurotransmitter vesicles are necessary to understand their functional properties. This mechanical characterization can be done by submerging the vesicle in a fluid medium and deforming it with a controlled electric field, which is known as electrodeformation. Electrodeformation of biological and artificial lipid vesicles is directly influenced by the vesicle and surrounding media properties and geometric factors. The problem is compounded when the vesicle is naturally charged, which creates electrophoretic forcing on the vesicle membrane. We studied the electrodeformation and transport of charged vesicles immersed in a fluid media under the influence of a DC electric field. The electric field and fluid‐solid interactions are modeled using a hybrid immersed interface‐immersed boundary technique. Model results are verified with experimental observations for electric field driven translocation of a virus through a nanopore sensor. Our modeling results show interesting changes in deformation behavior with changing electrical properties of the vesicle and the surrounding media. Vesicle movement due to electrophoresis can also be characterized by the change in local conductivity, which can serve as a potential sensing mechanism for electrodeformation experiments in solid‐state nanopore setups.  相似文献   

13.
《Electrophoresis》2017,38(3-4):501-506
With the recent worldwide changes in the legalization of marijuana, there is a significant need for rapid, roadside screening test for driving under the influence of drugs. A robust, sensitive, lateral flow assay has been developed to detect recent use via oral‐fluid testing for Δ9‐tetrahydrocannabinol (THC). This proof‐of‐concept assay uses a fluorescent‐based immunoassay detection of polymeric beads, conjugated to antibodies against native THC. The fluorescent technique allows for significantly lower limits of detection and higher precision determination of recent marijuana use without the use of urine or blood sampling—thus allowing for roadside identification. Detection levels of 0.01 ng/mL were distinguished from background and the lower limit of quantification was determined to approach 1 ng/mL.  相似文献   

14.
Fu LM  Yang RJ  Lin CH  Chien YS 《Electrophoresis》2005,26(9):1814-1824
This paper presents a novel technique in which low-frequency periodic electrokinetic driving forces are utilized to mix electrolytic fluid samples rapidly and efficiently in a double-T-form microfluidic mixer. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing the sample fluids which results in a simple and low-cost system for the mixing purpose. The effectiveness of the mixer as a function of the applied electric field and the periodic switching frequency is characterized by the intensity distribution calculated downstream from the mixing zone. The present numerical and experimental results confirm that the proposed double-T-form micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within a mixing length of 1000 microm downstream from the secondary T-junction when a 100 V/cm driving electric field strength and a 2 Hz periodic switching frequency are applied. The results reveal that the optimal switching frequency depends upon the magnitude of the main applied electrical field. The rapid double-T-form microfluidic mixer using the periodic driving voltage switching model proposed in this study has considerable potential for use in lab-on-a-chip systems.  相似文献   

15.
Carbazolyl groups pendant poly(glutamate) (PCLG) was prepared to analyze its charge‐transport properties by employing mobility measurements and thermally‐stimulated current (TSC) measurements. The mobility induced TSC (MITSC) model proposed by I.Chen was employed to evaluate the experimental TSC spectra with mobility results. Simulated MITSC spectra showed good agreement in its peak temperature with experimental TSC spectra for PCLG. This suggests that the carrier transport followed the trap‐limited mechanism estimated by the mobility results. Further, the peaks in experimental TSC spectra appeared over the same temperature range as that in thermally‐stimulated polarization current (TSPC) spectra. Since the TSPC spectra were found to be correlated with the dielectric tan δ spectra for PCLG, the peaks in TSPC spectra are attributed to the side‐chain relaxation for PCLG. Therefore, the similarity between TSPC and TSC spectra indicates that the charge‐transport mechanism for PCLG was considerably affected by side‐chain relaxation for PCLG, which would vary the energy state of trap sites and effectively reduces the energy for the release of the carriers trapped on the illuminated surface. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 61–69, 1999  相似文献   

16.
New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute‐filter‐and‐shoot protocol utilizing propan‐2‐ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (<3 min) and short total analysis time. Precision was well <15% with a few exceptions in liquid chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes.  相似文献   

17.
Gao  Yu  Huang  Jun  Liu  Yuwen  Yan  Jawei  Mao  Bingwei  Chen  Shengli 《中国科学:化学(英文版)》2019,62(4):515-520
We present a conceptual framework for understanding and formulating ion transport in concentrated solutions, which pictures the ion transport as an ion-vacancy coupled charge transfer reaction. A key element in this picture is that the transport of an ion from an occupied to unoccupied site involves a transition state which exerts double volume exclusion. An ab initio random walk model is proposed to describe this process. Subsequent coarse-graining results in a continuum formula as a function of chemical potentials of the constituents, which are further derived from a lattice-gas model. The subtlety here is that what has been taken to be the chemical potential of the ion in the past is actually that of the ion-vacancy couple. By aid of this new concept, the driving force of ion transport is essentially the chemical affinity of the ion-vacancy coupled charge transfer reaction, which is a useful concept to unify transport and reaction, two fundamental processes in electrochemistry. This phenomenological model is parameterized for a specific material by the aid of first-principles calculations. Moreover, its extension to multiple-component systems is discussed.  相似文献   

18.
An extended nonequilibrium molecular dynamics technique has been developed to investigate the transport properties of pressure-driven fluid flow in thin nanoporous membranes. Our simulation technique allows the simulation of the pressure-driven permeation of liquids through membranes while keeping a constant driving pressure using fluctuating walls. The flow of argon in the liquid state was simulated on applying an external pressure difference of 2.4x10(6) Pa through the slitlike and cylindrical pores. The volume flux and velocity distribution in the membrane pores were examined as a function of pore size, along with the interaction with the pore walls, and these were compared with values estimated using the Hagen-Poiseuille flow. The calculated velocity strongly depends on the strength of the interaction between the fluid and the atoms in the wall when the pore size is approximately<20sigma. The calculated volume flux also shows a dependence on the interaction between the fluid and the atoms in the wall. The Hagen-Poiseuille law overestimates or underestimates the flux depending on the interaction. From the analysis of calculated results, a good linear correlation between the density of the fluid in the membrane pores and the deviation of the flux estimated from the Hagen-Poiseuille flow was found. This suggests that the flux deviation in nanopore from the Hagen-Poiseuille flow can be predicted based on the fluid density in the pores.  相似文献   

19.
Induced‐charge electroosmosis (ICEO) has attracted tremendous popularity for driving fluid motion from the microfluidic community since the last decade, while less attention has been paid to ICEO‐based nanoparticle manipulation. We propose herein a unique concept of hybrid electroosmotic kinetics (HEK) in terms of bi‐phase ICEO (BICEO) actuated in a four‐terminal spiral electrode array, for effective electrokinetic enrichment of fluorescent polystyrene nanoparticles on ideally polarizable metal strips. First, by alternating the applied AC voltage waves between consecutive discrete terminals, the flow stagnation lines where the sample nanoparticles aggregate can be switched in time between two different distribution modes. Second, we innovatively introduce the idea of AC field‐effect flow control on BICEO; by altering the combination of gating voltage sequence, not only the number of circulative particle trapping lines is doubled, but the collecting locations can be flexibly reconfigured as well. Third, hydrodynamic streaming of DC‐biased BICEO is tested in our device design, wherein the global linear electroosmosis dominates BICEO contributed from both AC and DC components, resulting in a reduction of particle enrichment area, while with a sharp increase in sample transport speed inside the bulk phase. The flow field associated with HEK is predicted using a linear asymptotic analysis under Debye–Huckel limit, with the simulation results in qualitative agreement with in‐lab observations of nanoparticle trapping by exploiting a series of improved ICEO techniques. This work provides an affordable and field‐deployable platform for real‐time nanoparticle trapping in the context of dilute electrolyte.  相似文献   

20.
In this work, carbon‐nanotube‐assisted electromembrane extraction in the two‐phase mode combined with GC was developed for the preconcentration and determination of basic drugs in body fluids. The multiwalled carbon nanotubes dispersed in organic solvent are held in the pores of the porous fiber wall by capillary forces and sonification. The membrane with immobilized carbon nanotubes acts as a sorbent and provides an additional pathway for analyte transport. This study demonstrates that the immobilization of carbon nanotubes in the supported liquid membrane is an excellent approach to enhance the performance of the extraction. Optimization of the variables affecting this method was carried out in order to achieve the best extraction efficiency. Optimal extractions were accomplished with octanol as the extraction solvent, 50 V as the driving force and pH 7.4 in the sample solution with the whole assembly agitated at 1000 rpm for 20 min. Under the optimized extraction conditions, the proposed technique provided good linearity (R2 > 0.9990), repeatability (3.5–3.8%), low LODs (1.5 ng/mL), good preconcentration factors (292–316) and high recoveries (80–87%). Finally, this method was successfully used for the determination of tramadol and methadone in different body fluids including plasma and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号