首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An intramolecular, organocatalyzed Michael addition has been developed to obtain biologically important 2,3‐disubstituted cis‐2,3‐dihydrobenzofurans. By using mandelic acid salts of primary aminocatalysts, derived from cinchona alkaloids, the intramolecular cyclization reaction has been developed to proceed in high yield, with moderate to good diastereoselectivity, and up to 99 % ee. Based on the absolute configuration of the formed 2,3‐disubstituted‐cis‐2,3‐dihydrobenzofurans and by considering the observed substrate scope restrictions, a mechanistic rationalization has been presented.  相似文献   

2.
The enantioselective total synthesis of (+)‐gracilamine ( 1 ) is described. The strategy features a diastereoselective phenolic coupling reaction followed by a regioselective intramolecular aza‐Michael reaction to construct the ABCE ring system. The configuration at C3a in 1 was controlled by the stereocenter at C9a, which was selectively generated (91 % ee) by an organocatalytic enantioselective aza‐Friedel–Crafts reaction developed by our research group. This synthesis revealed that the absolute configuration of (+)‐gracilamine is 3aR, 4S, 5S, 6R, 7aS, 8R, 9aS.  相似文献   

3.
A facile and convenient synthesis of the chiral phthalide framework catalyzed by cationic iridium was developed. The method utilized cationic iridium/bisphosphine‐catalyzed asymmetric intramolecular carbonyl hydroacylation of 2‐keto benzaldehydes to furnish the corresponding optically active phthalide products in good to excellent enantioselectivities (up to 98% ee). The mechanistic studies using a deuterium‐labelled substrate suggested that the reaction involved an intramolecular carbonyl insertion mechanism to iridium hydride intermediate. In addition, we investigated the kinetic isotope effect (KIE) of intramolecular hydroacylation with deuterated substrate and determined that the C?H activation step is not included in the turnover‐limiting step.  相似文献   

4.
1,1′‐Biphenyl derivatives with amino acid/peptide substitution at C(2) and C(2′) (‘peptide‐biphenyl hybrids', 6 – 8 ) have been prepared by direct N‐acylation of amino acid/peptide derivatives with 1,1′‐biphenyl‐2,2′‐dicarbonyl dichloride ( 5 ). Both conformers, which arise from the rotation around the aryl aryl bond, have been detected by 1H‐NMR spectroscopy. Single atropisomers of each 6 ((R)‐configuration at the stereogenic axis) and 7 ((S)‐configuration at the stereogenic axis) have been obtained in quantitative yield by slow evaporation of methanolic solutions. The procedures are dynamic atropselective resolutions (asymmetric transformations of the second kind). The crystal structures of the peptide‐biphenyl hybrids 6 and 7 show highly ordered molecular and supramolecular structures with extensive intramolecular and intermolecular H‐bonding.  相似文献   

5.
A divergent synthetic approach to six Ganoderma meroterpenoids, namely ganocins A–C, ganocochlearins C and D, and cochlearol T, has been developed for the first time. This synthetic route features a two‐phase strategy which includes early‐stage rapid construction of a common planar tricyclic intermediate followed by highly selective late‐stage transformations into various Ganoderma meroterpenoids. Key to the strategy are a bioinspired intramolecular hetero‐Diels–Alder reaction and Stahl‐type oxidative aromatization, allowing efficient formation of the common tricyclic phenol intermediate. A nucleophilic dearomatization of the phenol unit, combined with a regioselective 1,4‐reduction of the resulting dienone, enabled rapid access to ganocins B and C. Additionally, site‐selective Mukaiyama hydration, followed by an intramolecular oxa‐Michael addition/triflation cascade, served as a key strategic element in the chemical synthesis of ganocin A.  相似文献   

6.
The first enantioselective total synthesis of (+)‐steenkrotin A has been achieved in 18 steps and 4.2 % overall yield. The key features of the strategy entail a Rh‐catalyzed O?H bond insertion followed by an intramolecular carbonyl‐ene reaction, two sequential SmI2‐mediated Ueno–Stork and ketyl–olefin cyclizations, and a cascade intramolecular aldol condensation/vinylogous retro‐aldol/aldol process with inversion of the relative configuration at the C7 position. The absolute configuration of (+)‐steenkrotin A was determined based on the stepwise construction of the stereocenters during the total synthesis.  相似文献   

7.
The bis(diphenylphosphino)methane (dppm)‐bridged dinuclear cycloplatinated complex {[Pt(L)]2(μ‐dppm)}2+ (Pt2 ? dppm; HL: 2‐phenyl‐6‐(1H‐pyrazol‐3‐yl)‐pyridine) demonstrates interesting reversible “pivot‐hinge”‐like intramolecular motions in response to the protonation/deprotonation of L. In its protonated “closed” configuration, the two platinum(II) centers are held in position by intramolecular d8–d8 Pt–Pt interaction. In its deprotonated “open” configuration, such Pt–Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)]2(μ‐dchpm)}2+ (Pt2 ? dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic π–π interactions between the phenyl moieties of the μ‐dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt–Pt interaction in Pt2 ? dppm. In the case of Pt2 ? dchpm, spectroscopic and spectrofluorometric titrations as well as X‐ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room‐temperature triplet metal–metal‐to‐ligand charge‐transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1‐pyrazolyl‐N moiety and the methylene CH and phenyl C–H of the μ‐dppm. The “open” configuration of the deprotonated Pt2 ? dppm was estimated to be 19 kcal mol?1 more stable than its alternative “closed” configuration. On the other hand, the open configuration of the deprotonated Pt2 ? dchpm was 6 kcal mol?1 less stable than its alternative closed configuration.  相似文献   

8.
Outlined herein is a novel and scalable synthesis of (−)‐vindorosine based on two key transformations. A highly diastereoselective vinylogous Mannich addition of dioxinone‐derived lithium dienolates with indolyl N ‐tert‐butanesulfinyl imines has been developed. In addition, an intramolecular Heathcock/aza‐Prins cyclization was introduced to construct both the C, and the highly substituted E rings for the synthesis of (−)‐vindorosine and related alkaloids.  相似文献   

9.
A concise and diastereoselective total synthesis of the diterpenoid (±)‐steenkrotin A is described for the first time. The strategy mainly features three key ring formations: 1) a rhodium‐catalyzed O? H bond insertion followed by an intramolecular carbonyl‐ene reaction to build up the tetrahydrofuran subunit; 2) sequential SmI2‐mediated Ueno–Stork and ketyl–olefin cyclizations to construct the [5,7] spirobicyclic skeleton; and 3) an intramolecular aldol condensation/vinylogous retro‐aldol/aldol sequence to form the final six‐membered ring with inversion of the relative configuration at the C7 position.  相似文献   

10.
We have reported that intramolecular chain‐transfer reaction takes place in radical polymerization of itaconates at high temperatures and/or at low monomer concentrations. In this article, radical polymerizations of di‐n‐butyl itaconate (DBI) were carried out in toluene at 60 °C in the presence of amide compounds. The 13C‐NMR spectra of the obtained poly(DBI)s indicated that the intramolecular chain‐transfer reaction was suppressed as compared with in the absence of amide compounds. The NMR analysis of DBI and N‐ethylacetamide demonstrated both 1:1 complex and 1:2 complex were formed at 60 °C through a hydrogen‐bonding interaction. The ESR analysis of radical polymerization of diisopropyl itaconate (DiPI) was conducted in addition to the NMR analysis of the obtained poly(DiPI). It was suggested that the suppression of the intramolecular chain‐transfer reaction with the hydrogen‐bonding interaction was achieved by controlling the conformation of the side chain at the penultimate monomeric unit of the propagating radical with an isotactic stereosequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4895–4905, 2004  相似文献   

11.
Salvinorin A ( 1 ) is natural hallucinogen that binds the human κ‐opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l ‐(+)‐tartaric acid into that of (?)‐ 1 via an unprecedented allylic dithiane intramolecular Diels–Alder reaction to obtain the trans‐decalin scaffold. Tsuji allylation set the C9 quaternary center and a late‐stage stereoselective chiral ligand‐assisted addition of a 3‐titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto‐acetate.  相似文献   

12.
In the title compound, C11H21N2O5P, one of the two carbazate N atoms is involved in the C=N double bond and the H atom of the second N atom is engaged in an intramolecular hydrogen bond with an O atom from the dimethylphosphorin‐2‐yl group, which is in an uncommon cis position with respect to the carbamate group. The cohesion of the crystal structure is also reinforced by weak intermolecular hydrogen bonds. Density functional theory (DFT) calculations at the B3LYP/6‐311++g(2d,2p) level revealed the lowest energy structure to have a Z configuration at the C=N bond, which is consistent with the configuration found in the X‐ray crystal structure, as well as a less stable E counterpart which lies 2.0 kcal mol−1 higher in potential energy. Correlations between the experimental and computational studies are discussed.  相似文献   

13.
A series of new 4‐aryloctahydropyrido[1,2‐c]pyrimidine‐1,3‐diones 6a,b,d‐h and j were synthesized by intramolecular cyclization of α‐aryl‐α‐(1‐ethoxycarbonyl‐2‐piperidyl)‐acetamide derivatives 5a,b,d‐h and j . The structures of compounds were determined by 1H and 13C nmr spectroscopy. Nmr and X‐ray diffraction data indicate that the configuration at the C4, C4a stereocenters constitute RR and SS pair.  相似文献   

14.
The total synthesis of gracilamine, a pentacyclic Amaryllidaceae alkaloid, was achieved from simple building blocks. The synthesis features a mild photo‐Nazarov reaction, intramolecular 1,4‐addition, and an intramolecular Mannich reaction. This approach not only confirms the C6 stereochemistry of natural gracilamine, and also provides a novel solution to prepare its derivatives and structurally related natural products.  相似文献   

15.
Significant improvements in the realm of a recently disclosed, novel synthetic concept towards the Iboga alkaloid family are presented. The key step for the construction of the bicyclic aliphatic core consists of an intramolecular nitrone? olefin 1,3‐dipolar cycloaddition reaction of a 1 : 1 mixture 15 / 16 yielding the two diastereoisomeric tricyclic isoxazolidine derivatives 17 and 18 . The required nitrones were prepared from the readily available (S)‐hydroxylactone 6 in twelve steps with an overall yield of 15% (average: 83.5% per step). The relative configuration of the minor isomer was deduced unambiguously by single‐crystal X‐ray analysis of the derived tricyclic carbamate 21 . As four out of five asymmetric centers in the pair 17 / 18 have opposite configuration, destruction of the one possessing the same absolute configuration transforms the original set of diastereoisomers into a pair of enantiomers. We verified this contention by oxidizing the two alcohols 20 and 22 to yield the two antipodal forms of ketone 23 . The absence of significant amounts of by‐product and the high reproducibility of the crucial cycloaddition reaction represent marked improvements over our earlier attempts. In addition, the new route, which starts from L ‐glutamate, should provide access to both naturally occurring antipodal series of the targeted alkaloid class.  相似文献   

16.
Although 2‐imino‐1H‐imidazol‐5(2H)‐ones have important biological activities in metabolism, their synthesis has rarely been investigated. Quinoxalines as “privileged scaffolds” in medicinal chemistry have been extensively investigated, but the development of novel and efficient synthetic methods remains very attractive. Herein, we have developed two copper‐catalyzed domino reactions for the synthesis of 2‐imino‐1H‐imidazol‐5(2H)‐ones and quinoxalines involving C?C bond‐cleavage with a 1,3‐dicarbonyl unit as a leaving group. The domino sequence for the synthesis of 2‐imino‐1H‐imidazol‐5(2H)‐ones includes aza‐Michael addition, intramolecular cyclization, C?C bond‐cleavage, 1,2‐rearrangement, and aerobic dehydrogenation reaction, whereas the domino sequence for the synthesis of quinoxalines includes aza‐Michael addition, intramolecular cyclization, elimination reaction, and C?C bond‐cleavage reaction. The two domino reactions have significant advantages including high efficiency, mild reaction conditions, and high tolerance of various functional groups.  相似文献   

17.
Highly enantioselective cycloisomerization of N ‐methylanilines, bearing o ‐alkenyl groups, into indolines is established. An iridium catalyst bearing a bidentate chiral diphosphine effectively promotes the intramolecular addition of the C(sp3)−H bond across a carbon–carbon double bond in a highly enantioselective fashion. The reaction gives indolines bearing a quaternary stereogenic carbon center at the 3‐position. The reaction mechanism involves rate‐determining oxidative addition of the N ‐methyl C−H bond, followed by intramolecular carboiridation and subsequent reductive elimination.  相似文献   

18.
A simple and efficient enantioselective synthesis of chromene, (?)‐(R)‐cordiachromene ( 1 ), and (?)‐(R)‐dictyochromenol ( 2 ) has been accomplished. This convergent synthesis utilizes intramolecular SNAr reaction for the formation of chroman ring, and Seebach's method of ‘self‐reproduction of chirality’ should establish the (R)‐configuration of the C(2) side chain as key steps.  相似文献   

19.
A rhodium(II)‐ or copper(I)‐catalyzed formal intramolecular carbene insertion into vinylic C(sp2)−H bonds is reported herein. This method provides straightforward access to 1H ‐indenes with high efficiency and excellent functional‐group compatibility. Mechanistically, the reaction is proposed to involve the following sequence: metal carbene formation, intramolecular nucleophilic addition of the double bond to the electron‐deficient carbene carbon atom, dearomatization, and finally a 1,5‐H shift.  相似文献   

20.
An efficient cobalt(III)‐catalyzed intramolecular cross‐dehydrogenative C?H/N?H coupling of ortho‐alkenylanilines has been developed utilizing O2 as a terminal oxidant. The developed reaction tolerates various reactive functional groups and allows the synthesis of diverse indole derivatives in good to excellent yields. The method was successfully extended to the synthesis of benzofurans through the intramolecular cross‐dehydrogenative C?H/O?H coupling of ortho‐alkenylphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号