首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nine- and ten-membered N-heterocyclic carbene (NHC) ligands have been developed and for the first time their gold(I) complexes were synthesized. The protonated NHC pro-ligands 2 a – h were prepared by the reaction of readily available N,N′-diarylformamidines with bis-electrophilic building blocks, followed by anion exchange. In situ deprotonation of the tetrafluoroborates 2 a – h with tBuOK in the presence of AuCl(SMe2) provided fast access to NHC-gold(I) complexes 3 – 10 . These new NHC-gold(I) complexes show very good catalytic activity in a cycloisomerization reaction (0.1 mol % catalyst loading, up to 100 % conversion) and their solid-state structures reveal high steric hindrance around the metal atom (%Vbur up to 53.0) which is caused by their expanded-ring architecture.  相似文献   

3.
Discovered in 2005, cyclic (alkyl)(amino)carbenes (CAACs) are among the most nucleophilic (σ donating) and also electrophilic (π‐accepting) stable carbenes known to date. These properties allow them to activate a variety of small molecules and enthalpically strong bonds, to stabilize highly reactive main‐group and transition‐metal diamagnetic and paramagnetic species, and to bind strongly to metal centers, which gives rise to very robust catalysts. The most important results published up to the end of 2013 are briefly summarized, while the majority of this Review focuses on findings reported within the last three years.  相似文献   

4.
5.
6.
7.
8.
9.
A series of mono- and dicarbene gold(I) complexes of types Au(CAAC)(Cl) [CAAC = cyclic (alkyl)(amino)carbene] (1) and [Au(CAAC)2]+[X]? (X = Cl, AuCl2) (2) have been prepared through reaction of AuCl(SMe2) with free carbenes ae, and structurally characterized by single X-ray diffraction studies (1a, 1b, 2d, 2e). In addition two new free cyclic (alkyl)(amino)carbenes (c and e) have been synthesized.  相似文献   

10.
贾丽凤  何涛  李志鹏  李雪梅 《催化学报》2010,31(11):1307-1315
 贵金属纳米粒子由于其小尺寸效应而表现出特殊的催化性能. 综述了纳米 Au 粒子表面配位催化剂的制备方法及其在催化中的应用. 由于 Au 可与硫化物形成配位键, 所以硫化物可在 Au 表面形成有序单分子膜. 单分子膜保护的 Au 纳米粒子具有非常好的溶解性、分散性、稳定性, 以及由不同的表面功能团而导致的不同的催化性能. 该催化体系兼具均相催化剂和多相催化剂的特点, 这对开发新型催化剂具有重要的理论和实际意义.  相似文献   

11.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]?n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was ?67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

12.
Alkynes usually oligomerize to give rings with a conjugated π‐electron system. In contrast, phosphaalkynes, R?C≡P, frequently give compounds with polycyclic structures, which are thermodynamically more stable than the corresponding π‐conjugated isomers. The syntheses of the first C3P3 tricyclic compounds are reported with either radical or cationic ground states stabilized by cyclic (alkyl)(amino)carbenes (CAACs). These compounds may be considered as examples of tricarbontriphosphide coordinated by carbenes and are likely formed via trimerization of the corresponding mono‐radicals CAAC‐CP.. The mechanism for the formation of these tricarbontriphosphide radicals has been rationalized by a combination of experiments and DFT calculations.  相似文献   

13.
Cyclic (amino)(aryl)carbenes (CAArCs) result from the replacement of the alkyl substituent of cyclic (alkyl)(amino) carbenes (CAACs) by an aryl group. This structural modification leads to enhanced electrophilicity of the carbene center with retention of the high nucleophilicity of CAACs, and therefore CAArCs feature a small singlet–triplet gap. The isoindolium precursors are readily prepared in good yields, and deprotonation at low temperature, in the presence of [RhCl(cod)]2 and [(Me2S)AuCl] lead to air‐stable rhodium and gold CAArC‐supported complexes, respectively. The rhodium complexes promote the [3+2] cycloaddition of diphenylcyclopropenone with ethyl phenylpropiolate, and induce the addition of 2‐vinylpyridine to alkenes by CH activation. The gold complexes allow for the catalytic three‐component preparation of 1,2‐dihydroquinolines from aniline and phenyl acetylene. These preliminary results illustrate the potential of CAArC ligands in transition‐metal catalysis.  相似文献   

14.
The high element abundance and d10 electron configuration make ZnII-based compounds attractive candidates for the development of novel photoactive molecules. Although a large library of purely fluorescent compounds exists, emission involving triplet excited states is a rare phenomenon for zinc complexes. We have investigated the photophysical and -chemical properties of a series of dimeric and monomeric ZnII halide complexes bearing a cyclic (alkyl)(amino)carbene (cAAC) as chromophore unit. Specifically, [(cAAC)XZn(μ-X)2ZnX(cAAC)] (X=Cl ( 1 ), Br ( 2 ), I ( 3 )) and [ZnX2(cAAC)(NCMe)] (X=Br ( 4 ), I ( 5 )) were isolated and fully characterized, showing intense visible light photoluminescence under UV irradiation at 297 K and fast photo-induced transformation. At 77 K, the compounds exhibit improved stability allowing to record ultra-long lifetimes in the millisecond regime. DFT/MRCI calculations confirm that the emission stems from 3XCT/LEcAAC states and indicate the phototransformation to be related to asymmetric distortion of the complexes by cAAC ligand rotation. This study enhances our understanding of the excited state properties for future development and application of new classes of ZnII phosphorescent complexes.  相似文献   

15.
While bound organic ligands provide steric protection against aggregation for metallic nanoparticles in solution, they can block a large fraction of the surface atoms which are needed for binding in catalysis and sensing applications. In this work, highly accessible Au nanoparticles ligated with bis(diphenylphosphine) molecules are synthesized and characterized in solution. Characterization is performed using high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence chemisorption experiments. These synthesized nanoparticles are accessible to a 2-napthalenethiol (2-NT) probe molecule in solution. The highest 2-NT accessibility is observed when using 1,1-bis(diphenylphosphino)methane (dppm) ligand where 61 % of the total gold atoms are accessible. It is hypothesized that increasing the rigidity of the bis(diphenylphosphine) ligand increases the number of binding sites on the Au nanoparticles. These nanoparticles are catalytically active for resazurin reduction, and the resazurin reduction rate scales with the number of binding sites.  相似文献   

16.
Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step‐by‐step procedures using stoichiometric amounts of reagents. Herein, a catalytic one‐pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg‐Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2′‐hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one‐pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused.  相似文献   

17.
18.
Reduction of the neutral carbene tetrachlorosilane adduct (cAAC)SiCl4 (cAAC=cyclic alkyl(amino) carbene :C(CMe2)2(CH2)N(2,6‐iPr2C6H3) with potassium graphite produces stable (cAAC)3Si3, a carbene‐stabilized triatomic silicon(0) molecule. The Si?Si bond lengths in (cAAC)3Si3 are 2.399(8), 2.369(8) and 2.398(8) Å, which are in the range of Si?Si single bonds. Each trigonal pyramidal silicon atom of the triangular molecule (cAAC)3Si3 possesses a lone pair of electrons. Its bonding, stability, and electron density distributions were studied by quantum chemical calculations.  相似文献   

19.
20.
A stable cyclic (alkyl)(amino)carbene (CAAC) 1 inserts into the para‐CF bond of pentafluoropyridine, and after fluoride abstraction, the iminium‐pyridyl adduct [ 3 ]+ was isolated. A cyclic voltammetry study shows a reversible three‐state redox system involving [ 3 ]+, [ 3 ] ? , and [ 3 ] ? . The CAAC‐pyridyl radical [ 3 ] ? , obtained by reduction of [ 3 ]+ with magnesium, has been spectroscopically and crystallographically characterized. In contrast to the lack of π communication between the CAAC and the pyridine units in cation [ 3 ]+, the unpaired electron of [ 3 ] ? is delocalized over an extended π system involving both heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号