首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

2.
The reaction of 2,2′:6′,2′′‐terpyridine (terpy) with CuCl2 in the presence of sodium sulfite led to the synthesis of the ionic complex aquachlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II) chlorido(dithionato‐κO)(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)cuprate(II) dihydrate, [CuCl(C15H11N3)(H2O)][CuCl(S2O6)(C15H11N3)]·2H2O, (I), and the in situ synthesis of the S2O62− dianion. Compound (I) is composed of a [CuCl(terpy)(H2O)]+ cation, a [Cu(S2O6)(terpy)] anion and two solvent water molecules. Thermogravimetric analysis indicated the loss of two water molecules at ca 363 K, and at 433 K the weight loss indicated a total loss of 2.5 water molecules. The crystal structure analysis of the resulting pale‐green dried crystals, μ‐dithionato‐κ2O:O′‐bis[chlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II)] monohydrate, [Cu2Cl2(S2O6)(C15H11N3)2]·H2O, (II), revealed a net loss of 1.5 water molecules and the formation of a binuclear complex with two [CuCl(terpy)]+ cations bridged by a dithionate dianion. The crystal‐to‐crystal transformation involved an effective reduction in the unit‐cell volume of ca 7.6%. In (I), the ions are linked by O—H...O hydrogen bonds involving the coordinated and solvent water molecules and O atoms of the dithionate unit, to form ribbon‐like polymer chains propagating in [100]. These chains are linked by Cu...Cl interactions [3.2626 (7) Å in the cation and 3.3492 (7) Å in the anion] centred about inversion centres, to form two‐dimensional networks lying in and parallel to (01). In (II), symmetry‐related molecules are linked by O—H...O hydrogen bonds involving the partially occupied disordered water molecule and an O atom of the bridging thiosulfite anion, to form ribbon‐like polymer chains propagating in [100]. These chains are also linked by Cu...Cl interactions [3.3765 (12) Å] centred about inversion centres to form similar two‐dimensional networks to (I) lying in and parallel to (02), crosslinked into three dimensions by C—H...O=S and C—H...O(water) interactions.  相似文献   

3.
In the crystal networks of N,N′‐bis(2‐chlorobenzyl)‐N′′‐(2,6‐difluorobenzoyl)phosphoric triamide, C21H18Cl2F2N3O2P, (I), N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis(4‐methoxybenzyl)phosphoric triamide, C23H24F2N3O4P, (II), and N‐(2‐chloro‐2,2‐difluoroacetyl)‐N′,N′′‐bis(4‐methylphenyl)phosphoric triamide, C16H17ClF2N3O2P, (III), C=O...H—NC(O)NHP(O) and P=O...H—Namide hydrogen bonds are responsible for the aggregation of the molecules. This is the opposite result from that commonly observed for carbacylamidophosphates, which show a tendency for the phosphoryl group, rather than the carbonyl counterpart, to form hydrogen bonds with the NH group of the C(O)NHP(O) skeleton. This hydrogen‐bond pattern leads to cyclic R22(10) motifs in (I)–(III), different from those found for all previously reported compounds of the general formula RC(O)NHP(O)[NR1R2]2 with the syn orientation of P=O versus NH [R22(8)], and also from those commonly observed for RC(O)NHP(O)[NHR1]2 [a sequence of alternate R22(8) and R22(12) motifs]. In these cases, the R22(8) and R22(12) graph sets are formed through similar kinds of hydrogen bond, i.e. a pair of P=O...H—NC(O)NHP(O) hydrogen bonds for the former and two C=O...H—Namide hydrogen bonds for the latter. This article also reviews 102 similar structures deposited in the Cambridge Structural Database and with the International Union of Crystallography, with the aim of comparing hydrogen‐bond strengths in the above‐mentioned cyclic motifs. This analysis shows that the strongest N—H...O hydrogen bonds exist in the R22(8) rings of some molecules. The phosphoryl and carbonyl groups in each of compounds (I)–(III) are anti with respect to each other and the P atoms are in a tetrahedral coordination environment. In the crystal structures, adjacent molecules are linked via the above‐mentioned hydrogen bonds in a linear arrangement, parallel to [010] for (I) and (III) and parallel to [100] for (II). Formation of the NC(O)NHP(O)—H...O=C instead of the NC(O)NHP(O)—H...O=P hydrogen bond is reflected in the higher NC(O)NHP(O)—H vibrational frequencies for these molecules compared with previously reported analogous compounds.  相似文献   

4.
A cyano‐bridged bimetallic 4f–3d complex, tri­aqua‐1κ3O‐μ‐cyano‐1:2κ2N:C‐penta­cyano‐2κ5C‐tetrakis(2‐pyrrolidone‐1κO)­chromium(III)­dysprosium(III) dihydrate, [CrDy(C4H7NO)4(CN)6(H2O)3]·2H2O, has been prepared and characterized by X‐ray crystallographic analysis. The structure consists of a neutral cyano‐bridged Dy–Cr dimer. A hydrogen‐bonded three‐dimensional architecture is formed through N—H?O, O—H?N and O—H?O hydrogen bonds.  相似文献   

5.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

6.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

7.
In the title compound, C14H23N6O2+·HSO4·H2O, the pyrimidinium ring of the cation adopts a twist‐boat conformation, induced by steric clashes between adjacent ring substituents; the anions and the water mol­ecules are linked by three O—H⃛O hydrogen bonds [H⃛O = 1.70–1.78 Å, O⃛O = 2.548 (2)–2.761 (2) Å and O—H⃛O = 161–168°] into chains of edge‐fused R(12) rings, which are linked into sheets by the cations, via three N—H⃛O hydrogen bonds [H⃛O = 1.96–2.17 Å, N⃛O = 2.820 (2)–2.935 (2) Å and N—H⃛O = 145–173°].  相似文献   

8.
The title compounds, trans‐bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)bis(ethanol‐κO)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans‐bis(1H‐benzimidazole‐κN3)bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen‐bonded supramolecular complexes. In (I), the CdII ion is six‐coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole‐2‐carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O—H...O and N—H...O hydrogen bonds results in two‐dimensional layers parallel to the ab plane. In (II), the six‐coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the CdII ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N—H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one‐dimensional chain parallel to the a axis. Moreover, these one‐dimensional chains are further linked via N—H...O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three‐dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co‐ligands occupy the axial sites in the coordination units.  相似文献   

9.
In the title compound, also known as N‐carbamoyl‐l ‐proline, C6H10N2O3, the pyrrolidine ring adopts a half‐chair conformation, whereas the carboxyl group and the mean plane of the ureide group form an angle of 80.1 (2)°. Molecules are joined by N—H...O and O—H...O hydrogen bonds into cyclic structures with graph‐set R22(8), forming chains in the b‐axis direction that are further connected via N—H...O hydrogen bonds into a three‐dimensional network.  相似文献   

10.
The asymmetric unit of O,O′‐dimethyl [(2,3,4,5,6‐pentafluorophenyl)hydrazinyl]phosphonate, C8H8F5N2O3P, is composed of two symmetry‐independent molecules with significant differences in the orientations of the C6F5 and OMe groups. In the crystal structure, a one‐dimensional assembly is mediated from classical N—H…O hydrogen bonds, which includes R22(8), D(2) and some higher‐order graph‐set motifs. By also considering weak C—H…O=P and C—H…O—C intermolecular interactions, a two‐dimensional network extends along the ab plane. The strengths of the hydrogen bonds were evaluated using quantum chemical calculations with the GAUSSIAN09 software package at the B3LYP/6‐311G(d,p) level of theory. The LP(O) to σ*(NH) and σ*(CH) charge‐transfer interactions were examined according to second‐order perturbation theory in natural bond orbital (NBO) methodology. The hydrogen‐bonded clusters of molecules, including N—H…O and C—H…O interactions, were constructed as input files for the calculations and the strengths of the hydrogen bonds are as follows: N—H…O [R22(8)] > N—H…O [D(2)] > C—H…O. The decomposed fingerprint plots show that the contribution portions of the F…H/H…F contacts in both molecules are the largest.  相似文献   

11.
The title compounds, di‐μ‐bromido‐bis[bromido(1‐carboxymethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)(nitrito‐κ2O,O′)cadmium(II)] dihydrate, [Cd2Br4(C8H15N2O2)2(NO2)2]·2H2O, (I), and aquabromido(1‐cyanomethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)bis(nitrito‐κ2O,O′)cadmium(II) monohydrate, [CdBr(C8H14N3)(NO2)2(H2O)]·H2O, (II), are two‐dimensional hydrogen‐bonded metal–organic hybrid complexes. In (I), the complex is situated on a centre of inversion so that each symmetry‐related CdII atom is coordinated by two bridging Br atoms, one monodentate Br atom, one chelating nitrite ligand and one organic ligand, yielding a significantly distorted octahedral geometry. The combination of O—H...O and O—H...Br hydrogen bonds produces centrosymmetric R66(16) ring motifs, resulting in two‐dimensional layers parallel to the ab plane. In contrast, the complex molecule in (II) is mononuclear, with the CdII atom seven‐coordinated by two bidentate nitrite groups, one N atom from the organic ligand, one monodentate Br atom and a water O atom in a distorted pentagonal–bipyramidal environment. The combination of O—H...O and O—H...Br hydrogen bonds produces R54(14) and R33(8) rings which lead to two‐dimensional layers parallel to the ac plane.  相似文献   

12.
The title 2:1 complex of 3‐nitrophenol (MNP) and 4,4′‐bipyridyl N,N′‐dioxide (DPNO), 2C6H5NO3·C10H8N2O2 or 2MNP·DPNO, crystallizes as a centrosymmetric three‐component adduct with a dihedral angle of 59.40 (8)° between the planes of the benzene rings of MNP and DPNO (the DPNO moiety lies across a crystallographic inversion centre located at the mid‐point of the C—C bond linking its aromatic rings). The complex owes its formation to O—H...O hydrogen bonds [O...O = 2.605 (3) Å]. Molecules are linked by intermolecular C—H...O and C—H...N interactions forming R21(6) and R22(10) rings, and R66(34) and R44(26) macro‐rings, all of which are aligned along the [01] direction, and R22(10) and R21(7) rings aligned along the [010] direction. The combination of chains of rings along the [01] and [010] directions generates the three‐dimensional structure. A total of 27 systems containing the DNPO molecule and forming molecular complexes of an organic nature were analysed and compared with the structural characteristics of the dioxide reported here. The N—O distance [1.325 (2) Å] depends not only on the interactions involving the O atom at the N—O group, but also on the structural ordering and additional three‐dimensional interactions in the crystal structure. A density functional theory (DFT) optimized structure at the B3LYP/6‐311G(d,p) level is compared with the molecular structure in the solid state.  相似文献   

13.
2,2,2‐Trinitroethanol, C2H3N3O7, at 100 (2) K has Z′ = 2 in the space group P21/c. The structure displays intramolecular O—H...O hydrogen bonds, as well as intermolecular O—H...O and C—H...O hydrogen bonding; the O—H...O hydrogen bonds, forming R44(8) rings, and dipolar nitro–nitro interactions account for the high density of 1.839 Mg m−3.  相似文献   

14.
In order to investigate the relative stability of N—H...O and N—H...S hydrogen bonds, we cocrystallized the antithyroid drug 6‐propyl‐2‐thiouracil with two complementary heterocycles. In the cocrystal pyrimidin‐2‐amine–6‐propyl‐2‐thiouracil (1/2), C4H5N3·2C7H10N2OS, (I), the `base pair' is connected by one N—H...S and one N—H...N hydrogen bond. Homodimers of 6‐propyl‐2‐thiouracil linked by two N—H...S hydrogen bonds are observed in the cocrystal N‐(6‐acetamidopyridin‐2‐yl)acetamide–6‐propyl‐2‐thiouracil (1/2), C9H11N3O2·2C7H10N2OS, (II). The crystal structure of 6‐propyl‐2‐thiouracil itself, C7H10N2OS, (III), is stabilized by pairwise N—H...O and N—H...S hydrogen bonds. In all three structures, N—H...S hydrogen bonds occur only within R22(8) patterns, whereas N—H...O hydrogen bonds tend to connect the homo‐ and heterodimers into extended networks. In agreement with related structures, the hydrogen‐bonding capability of C=O and C=S groups seems to be comparable.  相似文献   

15.
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.  相似文献   

16.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

17.
The title peptide N‐benzyl­oxy­carbonyl–ΔLeu–l ‐Ala–l ‐Leu–OCH3 [methyl N‐(benzyl­oxy­carbonyl)‐α,β‐de­hydro­leucyl‐l ‐alanyl‐l ‐leucinate], C24H35N3O6, was synthesized in the solution phase. The peptide adopts a type II′β‐turn conformation which is stabilized by an intramolecular 4 1 N—H?O hydrogen bond. The crystal packing is stabilized by two intermolecular N—H?O hydrogen bonds.  相似文献   

18.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

19.
The first crystalline phosphorus oxonitride imide H3P8O8N9 (=P8O8N6(NH)3) has been synthesized under high‐pressure and high‐temperature conditions. To this end, a new, highly reactive phosphorus oxonitride imide precursor compound was prepared and treated at 12 GPa and 750 °C by using a multianvil assembly. H3P8O8N9 was obtained as a colorless, microcrystalline solid. The crystal structure of H3P8O8N9 was solved ab initio by powder X‐ray diffraction analysis, applying the charge‐flipping algorithm, and refined by the Rietveld method (C2/c (no. 15), a=1352.11(7), b=479.83(3), c=1820.42(9) pm, β=96.955(4)°, Z=4). H3P8O8N9 exhibits a highly condensed (κ=0.47), 3D, but interrupted network that is composed of all‐side vertex‐sharing (Q4) and only threefold‐linking (Q3) P(O,N)4 tetrahedra in a Q4/Q3 ratio of 3:1. The structure, which includes 4‐ring assemblies as the smallest ring size, can be subdivided into alternating open‐branched zweier double layers {oB,${2{{2\hfill \atop \infty \hfill}}}$ }[2P3(O,N)7] and layers containing pairwise‐linked Q3 tetrahedra parallel (001). Information on the hydrogen atoms in H3P8O8N9 was obtained by 1D 1H MAS, 2D homo‐ and heteronuclear (together with 31P) correlation NMR spectroscopy, and a 1H spin‐diffusion experiment with a hard‐pulse sequence designed for selective excitation of a single peak. Two hydrogen sites with a multiplicity ratio of 2:1 were identified and thus the formula of H3P8O8N9 was unambiguously determined. The protons were assigned to Wyckoff positions 8f and 4e, the latter located within the Q3 tetrahedra layers.  相似文献   

20.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号