首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

2.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

3.
The reaction of stoichiometric MeLi with the 1:1 mixture of (?5‐C5H5)Fe(CO)2I/P(OR)3 (R = Me, Et, and Ph) at ?78°C changes the bonding mode between metal and ring from (?5‐C5H5) to (?4exo‐MeC5H5) and the oxidation state of metal from Fe(II) to Fe(O), the novel complexes (?4exo‐MeC5H5)Fe(CO)2P(C)R)3 being obtained in 45‐57% yields. The reaction of trace MeLi with the 1:1 mixture of (?5‐C5H5)Fe(CO)2I/P(OMe)3 at ?78°C results in 70% yield of the phosphonate complex (?5‐C5H5)Fe(CO)2P(O)(OMe)2 which is an Arbuzov‐like dealkylation product from the cationic intermediate [(?5‐C5H5)Fe(CO)2P(OMe)3+] and the iodide. The amines could assist the Arbuzov‐like dealkylation of [(?5‐C5H5)Fe(CO)2P(OMe)3+] [PF6?] where iron‐carbamoyl intermediates are likely involved in the case of primary amines.  相似文献   

4.
Developments in the chemistry of weakly coordinating anions enabled isolation of numerous unique metal complexes with unusual ligands. An important example is the family of metal-Fe(CO)5 complexes. In the current paper we present synthesis and thorough characterization of the first truly homoleptic {Cu[Fe(CO)5]2}+ cation obtained as a salt of weakly coordinating [Al(ORF)4] (RF=C(CF3)3) anion. TGA/DSC/MS study show that its decomposition becomes noticeable only above 110 °C, thus it can be stored as powder in air-free conditions for months. The crystal structure of {Cu[Fe(CO)5]2}+ shows strong asymmetry of the cation and very short Cu-CO bonds in comparison to analogous {M[Fe(CO)5]2}+ where M=Ag or Au. Characterization is complemented with analysis of vibrational spectra and extensive DFT calculations which give insight into the energetics of Cu+-Fe(CO)5 systems. Our results show that {Cu[Fe(CO)5]2}+ is homoleptic only as salt of [Al(ORF)4]. Furthermore, in the presence of additional, even weakly basic ligands, the Cu+-Fe(CO)5 bond strength decreases what may contribute to the complex's instability in liquid SO2 or in the presence of [SbF6]. These conclusions point at the key role of selection of proper anion and solvent in stabilization of these types of complexes.  相似文献   

5.
Infrared photodissociation spectroscopy of mass‐selected heteronuclear cluster anions in the form of OMFe(CO)5 (M=Sc, Y, La) indicates that all these anions involve an 18‐electron [Fe(CO)4]2− building block that is bonded with the M center through two bridged carbonyl ligands. The OLaFe(CO)5 anion is determined to be a CO‐tagged complex involving a [Fe(CO)4]2−[LaO]+ anion core. In contrast, the OYFe(CO)5 anion is characterized to have a [Fe(CO)4]2−[Y(η2‐CO2)]+ structure involving a side‐on bonded CO2 ligand. The CO‐tagged complex and the [Fe(CO)4]2−[Sc(η2‐CO2)]+ isomer co‐exist for the OScFe(CO)5 anion. These observations indicate that both the ScO+ and YO+ cations supported on [Fe(CO)4]2− are able to oxidize CO to CO2. Theoretical analyses show that [Fe(CO)4]2− coordination significantly weakens the MO+ bond and decreases the energy gap of the interacting valence orbitals between MO+ and CO, leading to the CO oxidation reactions being both thermodynamically exothermic and kinetically facile.  相似文献   

6.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

7.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

8.
Reaction of cyclooctatetraene (COT) iron(II) tricarbonyl, [Fe(cot)(CO)3], with one equivalent of K4Ge9 in ethylenediamine (en) yielded the cluster anion [Ge8Fe(CO)3]3? which was crystallographically‐characterized as a [K(2,2,2‐crypt)]+ salt in [K(2,2,2‐crypt)]3[Ge8Fe(CO)3]. The chemically‐reduced organometallic species [Fe(η3‐C8H8)(CO)3]? was also isolated as a side‐product from this reaction as [K(2,2,2‐crypt)][Fe(η3‐C8H8)(CO)3]. Both species were further characterized by EPR and IR spectroscopy and electrospray mass spectrometry. The [Ge8Fe(CO)3]3? cluster anion represents an unprecedented functionalized germanium Zintl anion in which the nine‐atom precursor cluster has lost a vertex, which has been replaced by a transition‐metal moiety.  相似文献   

9.
The electron impact induced mass spectra of [CF3SMn(CO)4]2, [CF3SeMn(CO)4]2, [CF3SFe(CO)3]2, [CF3SeFe(CO)3]2, CF3SeFe(CO)2C5H5 and CF3SCr(NO)2C5H5 are reported. These compounds exhibit weak molecular ion peaks and undergo preferential loss of CO or NO groups. The CO or NO free fragments suffer typical loss of ECF2(E = S, Se) with the simultaneous shift of F from carbon to metal. The ions [FFeC5H5]+ and [FCrC5H5]+ in the spectra of the cyclopentadienyl compounds prefer expulsion of π-cyclopentadienyls. The pyrolysis effects on the spectra of the compounds have been studied. An increase in temperature eases the expulsion of ECF2 groups from all the compounds and favors the formation of [Fe(C5H5)2]+ and [Cr(C5H5)2]+ in the cyclopentadienyl compounds.  相似文献   

10.
The reaction between Fe(CO)5, and group V donor ligands L, (L  PPh3, AsPh3, SbPh3, PMePh2, PMe2Ph, Asme2Ph, P(C6H11)3, P(n-Bu)3, P(i-Bu)3, P(OPh)3, P(OEt)3, P(OMe)3) in the presence of [(η5-C5Me5Fe(CO)2]2 (R  H, Me) or [(η5-C5Me5)Fe(CO)2]2 as catalyst in refluxing toluene, rapidly gives the complexes Fe(CO)4L in yields > 85%. The reaction rate is essentially independent of the nature of L for [(η5-C5Me5)Fe(CO)2]2 as catalyst. For the other catalysts, the rate is influenced predominantly by the steric properties of L. These results are interpreted in terms of the interaction between the catalyst and the ligand L to give derivatives of the type (η5-C5H4R)2Fe2,(CO)3,(L). These derivatives were also found to catalyse the reaction between Fe(CO)5, and L. The complexes [(η-C5H4R)Fe(CO)2]2 (R  H, Me) and [(η5-C5Me5)Fe(CO)2]2 also catalyse the reaction between Mn2(CO)10 and PPh3 to give Mn2(CO)8- PPh3)2 in > 80% yield.  相似文献   

11.
The reactions of Fe(CO)5, Fe(CO)4P(C6H5)3, M(CO)6 (M  W, Mo, Cr), and (CH3C5H4Mn(CO)3 with KH and several boron and aluminium hydrides were investigated. Iron pentacarbonyl was converted quantitatively to K+Fe(CO)4-(CHO) by hydride transfer from KBH(OCH3)3 allowing isolation of [P(C6H5)3]2-Nn+Fe(CO)4(CHO)? in 50% yield. Lower yields were obtained with LiBH(C2H5)3, and other hydride sources gave little or no formyl product. The stability of Fe(CO)4(CHO)? in THP was found to depend on the cation, decreasing in the order [P(C6H5)3]2N+ > K+ > Na+ > Li+. No formyl complexes were isolated and no spectroscopic evidence for formyl formation was observed in the reactions of the other transition metal carbonyls with several hydride sources. Fe(CO)4-P(C6H5)3 gave K2Fe(CO)4 when treated with KHB(OCH3)3. When treated with LiBH(C2H5)3, W(CO)6 gave a mixture of HW2(CO)10?and (OC)5W(COC2H5)?; the latter was methylated to give the carbene complex (OC)5WC(OCH3)C2H5.  相似文献   

12.
Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo‐metal [(OC)5Cr? O, (OC)4Fe? O, and (OC)3Ni? O] and dioxygen‐metal carbonyls [(OC)5Cr? OO, (OC)4Fe? OO, and (OC)3Ni? OO] are studied theoretically. All three oxo‐metal carbonyls were found to have triplet ground states, with metal‐oxo bond dissociation energies of 77 (Cr? O), 74 (Fe? O), and 51 (Ni? O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal‐oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr? OO), 21 (Fe? OO), and 4 (Ni? OO) kcal/mol] for the dioxygen‐metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2, driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Synthesis and Crystal Structure of [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] Treatment of [C(NMe2)3]2[(CO)4FeInCl3] ( 1 ) with hot water produces the dinuclear complex [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] ( 2 ) which could be crystallized from dichloromethane/pentane. 2 crystallizes in the monoclinic space group P21/n with a = 835.7(1), b = 1187.8(1), c = 1902.7(1) pm, β = 91.877(5)° and Z = 2. The anion contains a four‐membered Fe—In—Fe—In ring with octahedral environment at the iron atom and tetrahedral coordination at the In atom.  相似文献   

14.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

15.
The asymmetric unit of the title compound, [Ag(NH3)2][Ag(C7H5N2O4)2], comprises half an [Ag(NH3)2]+ cation and half an [Ag(anbz)2] anion (anbz is 2‐amino‐5‐nitrobenzoate). Both AgI ions are located on inversion centres. The cation has a linear coordination geometry with two symmetry‐related ammine ligands. The AgI cation in the anionic part shows a rare four‐coordinate planar geometry completed by two chelating symmetry‐related anbz ligands. Intra‐ and intermolecular N—H...O hydrogen bonds create a slightly undulating two‐dimensional supramolecular sheet. Adjacent sheets are only ca 3.3 Å apart. Ag...O, Ag...N and π–π stacking interactions consolidate the packing of the molecules in the solid state.  相似文献   

16.
Sequential additions of carbon nucleophiles to the (η5-pentadienyl)Fe(CO)3 cation afforded tricyclo[6.3.0.02.6]undecane, tricyclo[6.4.0.02.6]dodecane, tricyclo[7.3.0.02.7]dodecane and tricyclo[7.4.0.02.7]-tridecane derivatives. The same strategy can also be applied to construct heterotricyclic skeletons.  相似文献   

17.
[{Cp*(CO)2Fe}6Sn6O8]2+, a Cationic Tin Oxo Cluster with Organometallic Substituents The reaction of [{Cp*(CO)2Fe}SnCl3] 1 (Cp* = Pentamethylcyclopentadienyl) with Ag2O in acetone leads to the formation of [{Cp*(CO)2Fe}6Sn6O8][AgCl2]2( 2 ). 2 contains the novel tin oxo cluster cation [{Cp*(CO)2Fe}6Sn6O8]2+ which consists of six {Cp*(CO)2Fe}Sn‐groups bridged by eight μ3 oxygen atoms (Sn—O = 209.2(3)‐212.5(3) pm). The resulting Sn6O8 cage exhibits a distorted rhombodocahedral structure. The [AgCl2] anion is essentially linear with a Ag—Cl bond length of 250.3(3) pm.  相似文献   

18.
The complexes Ag(L)n[WCA] (L=P4S3, P4Se3, As4S3, and As4S4; [WCA]=[Al(ORF)4] and [F{Al(ORF)3}2]; RF=C(CF3)3; WCA=weakly coordinating anion) were tested for their performance as ligand-transfer reagents to transfer the poorly soluble nortricyclane cages P4S3, P4Se3, and As4S3 as well as realgar As4S4 to different transition-metal fragments. As4S4 and As4S3 with the poorest solubility did not yield complexes. However, the more soluble silver-coordinated P4S3 and P4Se3 cages were transferred to the electron-poor Fp+ moiety ([CpFe(CO)2]+). Thus, reaction of the silver salt in the presence of the ligand with Fp−Br yielded [Fp−P4S3][Al(ORF)4] ( 1 a ), [Fp−P4S3][F(Al(ORF)3)2] ( 1 b ), and [Fp−P4Se3][Al(ORF)4] ( 2 ). Reactions with P4S3 also yielded [FpPPh3−P4S3][Al(ORF)4] ( 3 ), a complex with the more electron-rich monophosphine-substituted Fp+ analogue [FpPPh3]+ ([CpFe(PPh3)(CO)]+). All complex salts were characterized by single-crystal XRD, NMR, Raman, and IR spectroscopy. Interestingly, they show characteristic blueshifts of the vibrational modes of the cage, as well as structural contractions of the cages upon coordination to the Fp/FpPPh3 moieties, which oppose the typically observed cage expansions that lead to redshifts in the spectra. Structure, bonding, and thermodynamics were investigated by DFT calculations, which support the observed cage contractions. Its reason is assigned to σ and π donation from the slightly P−P and P−E antibonding P4E3-cage HOMO (e symmetry) to the metal acceptor fragment.  相似文献   

19.
A high‐yield, mmolar‐scale synthesis of pure guanidinium nitroprusside, (CN3H6)2[(57)Fe(CN)5NO] (GNP) from iron metal is described. The iron metal contained pieces of 95.3% 57Fe together with normal iron so that an isotope enrichment in 57Fe of 25% was achieved. Single‐crystals of GNP could be grown in cubic shape and dimensions of about 3 × 4 × 4 mm3. The purity of the GNP product and the intermediates K4[(57)Fe(CN)6] · 3 H2O and Na2[(57)Fe(CN)5NO] · 2 H2O was ascertained by 57Fe Mössbauer spectroscopy as well as 13C, 14N and 57Fe NMR spectroscopy. The 57Fe NMR chemical shift for [(57)Fe(CN)5NO]2– in GNP was detected at +2004.0 ppm [vs Fe(CO)5].  相似文献   

20.
Complexes Containing Antimony Ligands: [tBu2(Cl)SbW(CO)5], [tBu2(OH)SbW(CO)5], O[SbPh2W(CO)5]2, E[SbMe2W(CO)5]2 (E = Se, Te), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] Syntheses of [tBu2(Cl)SbW(CO)5] ( 1 ), [tBu2(OH)SbW(CO)5] ( 2 ), O[SbPh2W(CO)5]2 ( 3 ), Se[SbMe2W(CO)5]2 ( 4 ), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] ( 5 ) Te[SbMe2W(CO)5]2 ( 6 ) and crystal structures of 1 – 5 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号