首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multivalent carbohydrate–protein interactions are frequently involved in essential biological recognition processes. Accordingly, multivalency is often also exploited for the design of high‐affinity lectin ligands aimed at the inhibition of such processes. In a previous study (D. Schwefel et al., J. Am. Chem. Soc. 2010 , 132, 8704–8719) we identified a tetravalent cyclopeptide‐based ligand with nanomolar affinity to the model lectin wheat germ agglutinin (WGA). To unravel the structural features of this ligand required for high‐affinity binding to WGA, we synthesized a series of cyclic and linear neoglycopeptides that differ in their conformational freedom as well as the number of GlcNAc residues. Combined evidence from isothermal titration calorimetry (ITC), enzyme‐linked lectin assays (ELLA), and dynamic light scattering (DLS) revealed different binding modes of tetra‐ and divalent ligands and that conformational preorganization of the ligands by cyclization is not a prerequisite for achieving high binding affinities. The high affinities of the tetravalent ligands rather stem from their ability to form crosslinks between several WGA molecules. The results illustrate that binding affinities and mechanisms are strongly dependent on the used multivalent system which offers opportunities to tune and control binding processes.  相似文献   

2.
3.
The accurate determination of the maximum turnover number and Michaelis constant for membrane enzymes remains challenging. Here, this problem has been solved by observing in parallel the hydrolysis of thousands of individual fluorescently labeled immobilized liposomes each processed by a single phospholipase A2 molecule. The release of the reaction product was tracked using total internal reflection fluorescence microscopy. A statistical analysis of the hydrolysis kinetics was shown to provide the Michaelis–Menten parameters with an accuracy better than 20 % without variation of the initial substrate concentration. The combined single‐liposome and single‐enzyme mode of operation made it also possible to unravel a significant nanoscale dependence of these parameters on membrane curvature.  相似文献   

4.
5.
Oligosaccharide determinants of cellular glycoconjugates interact with protein receptors triggering a variety of cellular responses within a wide range of physiological and pathological processes and with exquisitely tuned selectivity. This has led to the formulation of the hypothesis that a sugar code exists and that sugar-binding proteins (lectins) act to decipher it and translate it into biological responses. Interference with these recognition events by functional mimics of carbohydrates could thus be used to modulate or alter signal transmission, or to prevent the onset of diseases. Attempts to design and prepare glycomimetic inhibitors of well-known target lectins (cholera toxin, DC-SIGN) are reviewed in this concept paper.  相似文献   

6.
The HIV envelope glycoprotein gp120 takes advantage of the high‐mannose clusters on its surface to target the C‐type lectin dendritic cell‐specific intracellular adhesion molecule‐3‐grabbing non‐integrin (DC‐SIGN) on dendritic cells. Mimicking the cluster presentation of oligomannosides on the virus surface is a strategy for designing carbohydrate‐based antiviral agents. Bio‐inspired by the cluster presentation of gp120, we have designed and prepared a small library of multivalent water‐soluble gold glyconanoparticles (manno‐GNPs) presenting truncated (oligo)mannosides of the high‐mannose undecasaccharide Man9GlcNAc2 and have tested them as inhibitors of DC‐SIGN binding to gp120. These glyconanoparticles are ligands for DC‐SIGN, which also interacts in the early steps of infection with a large number of pathogens through specific recognition of associated glycans. (Oligo)mannosides endowed with different spacers ending in thiol groups, which enable attachment of the glycoconjugates to the gold surface, have been prepared. manno‐GNPs with different spacers and variable density of mannose (oligo)saccharides have been obtained and characterized. Surface plasmon resonance (SPR) experiments with selected manno‐GNPs have been performed to study their inhibition potency towards DC‐SIGN binding to gp120. The tested manno‐GNPs completely inhibit the binding from the micro‐ to the nanomolar range, while the corresponding monovalent mannosides require millimolar concentrations. manno‐GNPs containing the disaccharide Manα1‐2Manα are the best inhibitors, showing more than 20 000‐fold increased activity (100 % inhibition at 115 nM ) compared to the corresponding monomeric disaccharide (100 % inhibition at 2.2 mM ). Furthermore, increasing the density of dimannoside on the gold platform from 50 to 100 % does not improve the level of inhibition.  相似文献   

7.
We introduce a de novo designed peptide model system that enables the systematic study of 1) the role of a membrane environment in coiled-coil peptide folding, 2) the impact of different domains of an alpha-helical coiled-coil heptad repeat on the interaction with membranes, and 3) the dynamics of coiled-coil peptide-membrane interactions depending on environmental conditions. Starting from an ideal alpha-helical coiled-coil peptide sequence, several positively charged analogues were designed that exhibit a high propensity toward negatively charged lipid membranes. Furthermore, these peptides differ in their ability to form a stable alpha-helical coiled-coil structure. The influence of a membrane environment on peptide folding is studied. All positively charged peptides show strong interactions with negatively charged membranes. This interaction induces an alpha-helical structure of the former random-coil peptides, as revealed by circular dichroism measurements. Furthermore, vesicle aggregation is induced by a coiled-coil interaction of vesicle-bound peptides. Dynamic light scattering experiments show that the strength of vesicle aggregation increases with the peptide's intrinsic ability to form a stable alpha-helical coiled coil. Thus, the peptide variant equipped with the strongest inter- and intra-helical coiled-coil interactions shows the strongest effect on vesicle aggregation. The secondary structure of this peptide in the membrane-bound state was studied as well as its effect on the phospholipids. Peptide conformation within the peptide-lipid aggregates was analyzed by (13)C cross-polarization magic-angle spinning NMR experiments. A uniformly (13)C- and (15)N-labeled Leu residue was introduced at position 12 of the peptide chain. The (13)C chemical shift and torsion angle measurements support the finding of an alpha-helical structure of the peptide in its membrane-bound state. Neither membrane leakage nor fusion was observed upon peptide binding, which is unusual for amphiphatic peptide structures. Our results lay the foundation for a systematic study of the influence of the alpha-helical coiled-coil folding motif in membrane-active events on a molecular level.  相似文献   

8.
《Analytical letters》2012,45(11):2017-2032
Abstract

Lytic peptides such as melittin and mastoparan are usually assayed by measuring the leakage of cell contents; e.g., hemolysis. When such peptides lyse liposomes containing concentration-quenched 6-carboxyfluorescein (6CF), the resulting fluorescence increase is proportional to the amount of lytic peptide added. Using this 6CF-liposome system, one can assay nanogram quantities of melittin. A protocol was developed to survey peptides for lytic activity and at the same time, to test for mast cell degranulating activity. Peptides possessed either, both, or neither of these activities. The dye-liposome system was used to assay HPLC fractions of bee venom. This fluorescence assay for lytic activity is more sensitive and convenient than the hemolysis method, does not require removal of unlysed structures, and does not require animal cells.  相似文献   

9.
Disclosed here is the design of a novel supramolecular membrane with self‐mobile adsorption sites for biomolecules purification. In the 3D micropore channels of membrane matrix, the ligands are conjugated onto the cyclic compounds in polyrotaxanes for protein adsorption. During membrane filtration, the adsorption sites can rotate and/or slide along the axial chain, which results in the enhanced adsorption capacity. The excellent performance of supra­molecular membrane is related with the dynamic working manner of adsorption sites, which plays a crucial role on avoiding spatial mismatching and short‐circuit effect. The supra­molecular strategy described here has general suggestions for the “sites” involved technologies such as catalysis, adsorption, and sensors, which is of broad interest.

  相似文献   


10.
The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N‐glycans with α1,6‐linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N‐glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed β‐prism III. Three biantennary core‐fucosylated N‐glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6‐fucosylated N‐glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N‐glycan flexibility upon binding.  相似文献   

11.
12.
Developing a monomeric form of an avidin‐like protein with highly stable biotin binding properties has been a major challenge in biotin‐avidin linking technology. Here we report a monomeric avidin‐like protein—enhanced monoavidin—with off‐rates almost comparable to those of multimeric avidin proteins against various biotin conjugates. Enhanced monoavidin (eMA) was developed from naturally dimeric rhizavidin by optimally maintaining protein rigidity during monomerization and additionally shielding the bound biotin by diverse engineering of the surface residues. eMA allowed the monovalent and nonperturbing labeling of head‐group‐biotinylated lipids in bilayer membranes. In addition, we fabricated an unprecedented 24‐meric avidin probe by fusing eMA to a multimeric cage protein. The 24‐meric avidin and eMA were utilized to demonstrate how artificial clustering of cell‐surface proteins greatly enhances the internalization rates of assembled proteins on live cells.  相似文献   

13.
14.
To investigate the density‐dependent binding of glycans by lectins using carbohydrate microarrays, a number of C‐terminal hydrazide‐conjugated neoglycopeptides with various valences and different spatial arrangements of the sugar ligands were prepared on a solid support. The synthetic strategy includes (1) assembly of alkyne‐linked peptides possessing C‐terminal hydrazide on a solid support, (2) coupling of azide‐linked, unprotected sugars to the alkyne‐linked peptides on the solid support utilizing click chemistry, and (3) release of the neoglycopeptides from the solid support. By using this synthetic methodology, sixty five neoglycopeptides with a valency ranging from 1 to 4 and different spatial arrangements of the carbohydrate ligands were generated. Carbohydrate microarrays were constructed by immobilizing the prepared neoglycopeptides on epoxide‐derivatized glass slides and were used to analyze the density‐dependent binding of glycans by lectins. The results of binding property determinations show that lectin binding is highly dependent on the surface glycan density.  相似文献   

15.
Multiplication of functional units through self‐assembly is a powerful way to new properties and functions. In particular, self‐organization of components decorated with recognition groups leads to multivalent entities, amenable to strong and selective binding with multivalent targets, such as protein receptors. Here we describe an efficient, supramolecular, one‐pot valency multiplication process proceeding through self‐organization of monovalent components into well‐defined, grid‐shaped [2×2] tetranuclear complexes bearing eight sugar residues for multivalent interaction with the tetrameric lectin, concanavalin A (Con A). The grids are stable in water under physiological pH at a relatively high concentration, but dissociate readily at slightly more acidic pH or upon dilution below a certain threshold, in a type of on–off behavior. The carbohydrate‐decorated grids interact strongly and selectively with Con A forming triply supramolecular bio‐hybrid polymeric networks, which lead to a highly specific phase‐separation and quasi‐quantitative precipitation of Con A out of solution. Dramatic effects of valency number on agglutination properties were demonstrated by comparison of grids with divalent carbohydrates of covalent and non‐covalent (L ‐shaped, mononuclear zinc complex) scaffolds. The results presented here provide prototypical illustration of the power of multivalency generation by self‐assembly leading to defined arrays of functional groups and binding patterns.  相似文献   

16.
The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear (31P and 1H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.  相似文献   

17.
一种新型糖脂单分子膜与伴刀豆蛋白A的分子识别张希,沈家骢RumpE.,RingsdorfH.(吉林大学化学系,长春,130023)(德国Mainz大学有机化学研究所)关键词糖脂,单分子膜,分子识别糖与蛋白质、核酸相比,直到六十年代还只当作贮能和结构的...  相似文献   

18.
A series of strong polycations is synthesized through the anionic polymerization of 2‐vinylpyridine, followed by subsequent quaternization of the resulting polymer. Polycations based on quaternized 2‐vinylpyridine (PVPQs) with degrees of polymerization (DP) from 20 to 440 are adsorbed on the surface of small anionic liposomes. Liposome/PVPQ complexes are characterized by using a number of physicochemical methods. All PVPQs are totally adsorbed onto the liposome surface up to a certain concentration at which saturation is reached (which is specific for each PVPQ). The integrity of the adsorbed liposomes remains intact. Short PVPQs interact with anionic lipids localized on the outer membrane leaflet, whereas long PVPQs extract anionic lipids from the inner to outer leaflet. Complexes tend to aggregate, and the largest aggregates are formed when the initial charge of the liposomes is fully neutralized by the charge of the PVPQ. PVPQs with intermediate DPs demonstrate behavioral features of both short and long PVPQs. These results are important for the interpretation of the biological effects of cationic polymers and the selection of cationic polymers for biomedical applications.  相似文献   

19.
Losing the grip : The synthesis of multivalent low‐molecular‐weight dendrons with lysine branching units coupled to disulfide‐linked spermine surface groups is described. It is furthermore demonstrated that the dendrons bind DNA with good affinity (see image), but are also able to release the DNA in a reductive environment.

  相似文献   


20.
Pharmaceutical production typically involves multiple reaction steps with separations between successive reactions. Two processes which complicate the transition from batch to continuous operation in multistep synthesis are solvent exchange (especially high‐boiling‐ to low‐boiling‐point solvent), and catalyst separation. Demonstrated here is membrane separation as an enabling platform for undertaking these processes during continuous operation. Two consecutive reactions are performed in different solvents, with catalyst separation and inter‐reaction solvent exchange achieved by continuous flow membrane units. A Heck coupling reaction is performed in N,N‐dimethylformamide (DMF) in a continuous membrane reactor which retains the catalyst. The Heck reaction product undergoes solvent exchange in a counter‐current membrane system where DMF is continuously replaced by ethanol. After exchange the product dissolved in ethanol passes through a column packed with an iron catalyst, and undergoes reduction (>99 % yield).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号