首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanodiamond–graphene core–shell materials have several unique properties compared with purely sp2‐bonded nanocarbons and perform remarkably well as metal‐free catalysts. In this work, we report that palladium nanoparticles supported on nanodiamond–graphene core–shell materials (Pd/ND@G) exhibit superior catalytic activity in CO oxidation compared to Pd NPs supported on an sp2‐bonded onion‐like carbon (Pd/OLC) material. Characterization revealed that the Pd NPs in Pd/ND@G have a special morphology with reduced crystallinity and are more stable towards sintering at high temperature than the Pd NPs in Pd/OLC. The electronic structure of Pd is changed in Pd/ND@G, resulting in weak CO chemisorption on the Pd NPs. Our work indicates that strong metal–support interactions can be achieved on a non‐reducible support, as exemplified for nanocarbon, by carefully tuning the surface structure of the support, thus providing a good example for designing a high‐performance nanostructured catalyst.  相似文献   

2.
Au–Pd core–shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar‐sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen‐evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au–Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3‐fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite‐difference time‐domain (FDTD) simulations show a stronger electric field enhancement on Au–Pd core–shell THH than those on other Pd‐containing nanocrystals. Light‐assisted nitro reduction by ammonia borane on Au–Pd THH was also demonstrated. Au–Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.  相似文献   

3.
The design of high‐performance electrocatalysts for the alkaline hydrogen evolution reaction (HER) is highly desirable for the development of alkaline water electrolysis. Phase‐ and interface‐engineered platinum–nickel nanowires (Pt‐Ni NWs) are highly efficient electrocatalysts for alkaline HER. The phase and interface engineering is achieved by simply annealing the pristine Pt‐Ni NWs under a controlled atmosphere. Impressively, the newly generated nanomaterials exhibit superior activity for the alkaline HER, outperforming the pristine Pt‐Ni NWs and commercial Pt/C, and also represent the best alkaline HER catalysts to date. The enhanced HER activities are attributed to the superior phase and interface structures in the engineered Pt‐Ni NWs.  相似文献   

4.
Designing highly active catalysts at an atomic scale is required to drive the hydrogen evolution reaction (HER). Copper–platinum (Cu‐Pt) dual sites were alloyed with palladium nanorings (Pd NRs) containing 1.5 atom % Pt, using atomically dispersed Cu on ultrathin Pd NRs as seeds. The ultrafine structure of atomically dispersed Cu‐Pt dual sites was confirmed with X‐ray absorption fine structure (XAFS) measurements. The Pd/Cu‐Pt NRs exhibit excellent HER properties in acidic solution with an overpotential of only 22.8 mV at a current density of 10 mA cm−2 and a high mass current density of 3002 A g−1(Pd+Pt) at a −0.05 V potential.  相似文献   

5.
Production of hydrogen by electrochemical water splitting has been hindered by the high cost of precious metal catalysts, such as Pt, for the hydrogen evolution reaction (HER). In this work, novel hierarchical β‐Mo2C nanotubes constructed from porous nanosheets have been fabricated and investigated as a high‐performance and low‐cost electrocatalyst for HER. An unusual template‐engaged strategy has been utilized to controllably synthesize Mo‐polydopamine nanotubes, which are further converted into hierarchical β‐Mo2C nanotubes by direct carburization at high temperature. Benefitting from several structural advantages including ultrafine primary nanocrystallites, large exposed surface, fast charge transfer, and unique tubular structure, the as‐prepared hierarchical β‐Mo2C nanotubes exhibit excellent electrocatalytic performance for HER with small overpotential in both acidic and basic conditions, as well as remarkable stability.  相似文献   

6.
Single‐atom nickel dopants anchored to three‐dimensional nanoporous graphene can be used as catalysts of the hydrogen evolution reaction (HER) in acidic solutions. In contrast to conventional nickel‐based catalysts and graphene, this material shows superior HER catalysis with a low overpotential of approximately 50 mV and a Tafel slope of 45 mV dec?1 in 0.5 M H2SO4 solution, together with excellent cycling stability. Experimental and theoretical investigations suggest that the unusual catalytic performance of this catalyst is due to sp–d orbital charge transfer between the Ni dopants and the surrounding carbon atoms. The resultant local structure with empty C–Ni hybrid orbitals is catalytically active and electrochemically stable.  相似文献   

7.
Major challenges encountered when trying to replace precious‐metal‐based electrocatalysts of the hydrogen evolution reaction (HER) in acidic media are related to the low efficiency and stability of non‐precious‐metal compounds. Therefore, new concepts and strategies have to be devised to develop electrocatalysts that are based on earth‐abundant materials. Herein, we report a hierarchical architecture that consists of ultrathin graphene shells (only 1–3 layers) that encapsulate a uniform CoNi nanoalloy to enhance its HER performance in acidic media. The optimized catalyst exhibits high stability and activity with an onset overpotential of almost zero versus the reversible hydrogen electrode (RHE) and an overpotential of only 142 mV at 10 mA cm?2, which is quite close to that of commercial 40 % Pt/C catalysts. Density functional theory (DFT) calculations indicate that the ultrathin graphene shells strongly promote electron penetration from the CoNi nanoalloy to the graphene surface. With nitrogen dopants, they synergistically increase the electron density on the graphene surface, which results in superior HER activity on the graphene shells.  相似文献   

8.
Improving the electrocatalytic activity and durability of Pt‐based catalysts with low Pt content toward the oxygen reduction reaction (ORR) is one of the main challenges in advancing the performance of polymer electrolyte membrane fuel cells (PEMFCs). Herein, a designed synthesis of well‐defined Pd@Pt core–shell nanoparticles (NPs) with a controlled Pt shell thickness of 0.4–1.2 nm by a facile wet chemical method and their electrocatalytic performances for ORR as a function of shell thickness are reported. Pd@Pt NPs with predetermined structural parameters were prepared by in situ heteroepitaxial growth of Pt on as‐synthesized 6 nm Pd NPs without any sacrificial layers and intermediate workup processes, and thus the synthetic procedure for the production of Pd@Pt NPs with well‐defined sizes and shell thicknesses is greatly simplified. The Pt shell thickness could be precisely controlled by adjusting the molar ratio of Pt to Pd. The ORR performance of the Pd@Pt NPs strongly depended on the thickness of their Pt shells. The Pd@Pt NPs with 0.94 nm Pt shells exhibited enhanced specific activity and higher durability compared to other Pd@Pt NPs and commercial Pt/C catalysts. Testing Pd@Pt NPs with 0.94 nm Pt shells in a membrane electrode assembly revealed a single‐cell performance comparable with that of the Pt/C catalyst despite their lower Pt content, that is the present NP catalysts can facilitate low‐cost and high‐efficient applications of PEMFCs.  相似文献   

9.
Graphene‐based materials still exhibit poor electrocatalytic activities for the hydrogen evolution reaction (HER) although they are considered to be the most promising electrocatalysts. We fabricated a graphene‐analogous material displaying exceptional activity towards the HER under acidic conditions with an overpotential (57 mV at 10 mA cm?2) and Tafel slope (44.6 mV dec?1) superior to previously reported graphene‐based materials, and even comparable to the state‐of‐the art Pt/C catalyst. X‐ray absorption near‐edge structure (XANES) and solid‐state NMR studies reveal that the distinct feature of its structure is dual graphitic‐N doping in a six‐membered carbon ring. Density functional theory (DFT) calculations show that the unique doped structure is beneficial for the activation of C?H bonds and to make the carbon atom bonded to two graphitic N atoms an active site for the HER.  相似文献   

10.
Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal‐free catalyst in energy‐related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co‐doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt‐free HER catalyst, 2D MoS2. The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis.  相似文献   

11.
The synergistic effect between Pt and WC is beneficial for methanol electro‐oxidation, and makes Pt–WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small‐sized and contacting Pt–WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small‐sized, well‐dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre‐existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2–3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt–WC nanostructures. These results are consistent with the theoretical findings. X‐ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt–WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively.  相似文献   

12.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

13.
Herein, we demonstrate an easy way to improve the hydrogen evolution reaction (HER) activity of Pt electrodes in alkaline media by introducing Ni–Fe clusters. As a result, the overpotential needed to achieve a current density of 10 mA cm?2 in H2‐saturated 0.1 m KOH is reduced for the model single‐crystal electrodes down to about 70 mV. To our knowledge, these modified electrodes outperform any other reported electrocatalysts tested under similar conditions. Moreover, the influence of 1) Ni to Fe ratio, 2) cluster coverage, and 3) the nature of the alkali‐metal cations present in the electrolyte on the HER activity has been investigated. The observed catalytic performance likely originates from both the improved water dissociation at the Ni–Fe clusters and the subsequent optimal hydrogen adsorption and recombination at Pt atoms present at the Ni–Fe/Pt boundary.  相似文献   

14.
In a recent study, we demonstrated that Pluronic F127 triblock copolymer plays a critical role in the formation of dendritic Pt nanostructures (L. Wang, Y. Yamauchi, J. Am. Chem. Soc. 2009 , 131, 9152–9153). Herein, we expand this concept to produce novel dendritic Pt–Pd alloy nanoparticles. In this paper, a very simple, one‐step and efficient route is proposed to directly produce dendritic Pt–Pd alloy nanoparticles with high surface area in high yield, which is carried out simply by stirring an aqueous solution that contains K2PtCl4 and Na2PdCl4 binary precursors in the presence of Pluronic F127 block copolymer and ascorbic acid at room temperature within 30 min without the need for any template, seed‐mediated growth, or additive. By simply changing the compositional ratios of the Pt and Pd sources in the precursor solutions, Pt–Pd nanodendrites with various compositions can be easily produced. Because of its unique simplicity, the proposed approach can be considered as a powerful strategy for producing Pt–Pd alloy nanoparticles with unique nanoarchitectures for commercial devices.  相似文献   

15.
In order to explore the effect of graphene surface chemistry on electrochemical performance based on polyaniline–graphene hybrid material electrodes, four different polyaniline–graphene nanocomposites were fabricated with graphene oxide, reduced graphene oxide, aminated graphene and sulfonated graphene as carriers, respectively. The nanocomposites feature various structures and morphologies, which could be used to more deeply understand the morphology and structure effects caused by surface chemistry on electrochemical performance. The experimental results reveal that functionalized electronegative graphene was conducive to the vertical and neat growth of polyaniline (PANI) nanorods. The array architecture endowed the PANI–GS nanocomposite with a large ion‐accessible surface area and high‐efficiency electron‐ and ion‐transport pathways. Meanwhile, the introduction of sulfonic acid functional groups accelerated the redox reaction with doping and dedoping of the PANI. Thereby, the PANI–GS nanocomposite exhibited a high specific capacitance of 863.2 F g?1 at a current density of 0.2 A g?1 and the excellent rate capability of 67.4 % (581.6 F g?1 at 5 A g?1), which were much better than the other three nanocomposites produced.  相似文献   

16.
Platinum is a commonly used cocatalyst for improved charge separation and surface reactions in photocatalytic water splitting. It is envisioned that its practical applications can be facilitated by further reducing the material cost and improving the efficacy of Pt cocatalysts. In this direction, the use of atomically controlled Pd@Pt quasi‐core–shell cocatalysts in combination with TiO2 as a model semiconductor is described. As demonstrated experimentally, the electron trapping necessary for charge separation is substantially promoted by combining a Schottky junction with interfacial charge polarization, enabled by the three‐atom‐thick Pt shell. Meanwhile, the increase in electron density and lattice strain would significantly enhance the adsorption of H2O onto Pt surface. Taken together, the improved charge separation and molecular activation dramatically boost the overall efficiency of photocatalytic water splitting.  相似文献   

17.
Hybridization of organometallic complexes with graphene‐based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [CoII(acac)2] (acac=acetylacetonate), with N‐doped graphene‐based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt‐containing species is coordinated to heterocyclic groups in N‐doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co‐O4‐N structure.  相似文献   

18.
《Electroanalysis》2017,29(5):1258-1266
The nanoporous graphene papers (NGPs) was prepared by the hard‐template method. The Pt−Pd modified NGPs hybrid was prepared by the self‐assembly method. Then a glassy carbon electrode (GCE) modified with Pt−Pd bimetallic nanoparticles‐functionalized nanoporous graphene composite has been prepared for the electrochemical determination of Xanthine (XA). The Pt−Pd/NGPs hybrid was characterized by transmission electron microscopy, scanning electron microscope and X‐ray diffraction. The electrochemical behavior of XA on Pt−Pd/NGPs/GCE was investigated by cyclic voltammetry and amperometric i‐t. The Pt−Pd/NGPs modified electrode exhibited remarkably electrocatalytic activity towards the oxidation reaction of XA in phosphate buffer solution (pH=5.5). Under the optimal conditions, the determination of XA was accomplished by using amperometric i‐t, the linear response range from 1.0×10−5∼1.2×10−4 M. The detection limit was 3.0×10−6 M (S/N=3). The proposed modified electrode showed good sensitivity, selectivity, and stability with applied to determine XA in human urine.  相似文献   

19.
《化学:亚洲杂志》2017,12(17):2284-2290
This work demonstrates a facile in situ synthesis of cobalt–manganese mixed sulfide (CoMn‐S) nanocages on reduced graphene oxide (RGO) sheets by using a crystalline Co–Mn precursor as the sacrificial template. The CoMn‐S/RGO hybrid was applied as the anode for Li‐ion storage and exhibited superior specific capacity, excellent cycling performance, and great rate capability. In particular, lithium storage testing revealed that the hybrid delivered high discharge–charge capacities of 670 mA h g−1 at 1.0 A g−1 after 400 cycles and 925 mA h g−1 at 0.1 A g−1 after 300 cycles. The outstanding electrochemical performance of CoMn‐S/RGO is attributed to the close entanglement of nanocages with RGO nanosheets achieved by the synthetic method, which greatly improves ion/electron transport along the interfaces and efficiently mitigates volume dilation during lithium reactions. This rational design of both the composition and architecture of mixed metal sulfides can be expanded to other composite systems for high‐capacity Li‐ion batteries and provides a unique insight into the development of advanced hybrid electrode materials.  相似文献   

20.
We have synthesized a porous Mo‐based composite obtained from a polyoxometalate‐based metal–organic framework and graphene oxide (POMOFs/GO) using a simple one‐pot method. The MoO2@PC‐RGO hybrid material derived from the POMOFs/GO composite is prepared at a relatively low carbonization temperature, which presents a superior activity for the hydrogen‐evolution reaction (HER) in acidic media owing to the synergistic effects among highly dispersive MoO2 particles, phosphorus‐doped porous carbon, and RGO substrates. MoO2@PC‐RGO exhibits a very positive onset potential close to that of 20 % Pt/C, low Tafel slope of 41 mV dec?1, high exchange current density of 4.8×10?4 A cm?2, and remarkable long‐term cycle stability. It is one of the best high‐performance catalysts among the reported nonprecious metal catalysts for HER to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号