首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of organic dyes were prepared that displayed remarkable solar‐to‐energy conversion efficiencies in dye‐sensitized solar cells (DSSCs). These dyes are composed of a 4‐tert‐butylphenylamine donor group (D), a cyanoacrylic‐acid acceptor group (A), and a phenylene‐thiophene‐phenylene (PSP) spacer group, forming a D‐π‐A system. A dye containing a bulky tert‐butylphenylene‐substituted carbazole (CB) donor group showed the highest performance, with an overall conversion efficiency of 6.70 %. The performance of the device was correlated to the structural features of the donor groups; that is, the presence of a tert‐butyl group can not only enhance the electron‐donating ability of the donor, but can also suppress intermolecular aggregation. A typical device made with the CB‐PSP dye afforded a maximum photon‐to‐current conversion efficiency (IPCE) of 80 % in the region 400–480 nm, a short‐circuit photocurrent density Jsc=14.63 mA cm?2, an open‐circuit photovoltage Voc=0.685 V, and a fill factor FF=0.67. When chenodeoxycholic acid (CDCA) was used as a co‐absorbent, the open‐circuit voltage of CB‐PSP was elevated significantly, yet the overall performance decreased by 16–18 %. This result indicated that the presence of 4‐tert‐butylphenyl substituents can effectively inhibit self‐aggregation, even without CDCA.  相似文献   

2.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   

3.
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value.  相似文献   

4.
Three novel dyes of JJ1 , JJ2 , and JJ6 featured zinc porphyrin as a basic core structure; N, N‐alkyl‐4‐(prop‐1‐yn‐1‐yl)aniline as an electron donor linked to meso‐10‐position; 4‐(prop‐1‐yn‐1‐yl)benzoic acid as an electron acceptor linked to meso‐20‐position; and 2,6‐bis(dodecyloxy)phenyl or 2,6‐bis(octyloxy)phenyl respectively linked to meso‐5 and meso‐15‐positions of zinc porphyrin have been synthesized and used for dye‐sensitized solar cells. Porphyrin JJ6 featured the shortest alkyl group (─C4H9) on the donor, whereas JJ2 contained the longest alkyl groups (─C12H25), and JJ1 has a medium length of octyl groups. With these new porphyrin sensitizers, we observed that JJ6 has 7.55% power conversion efficiency under simulated one‐sun illumination (AM 1.5 G, 100 mW/cm2) with JSC = 18.64 mA/cm2, VOC = 0.66 V, and fill factor (FF) = 0.61, which was higher than the other two; JJ1 (7.35%) with JSC = 18.83 mA/cm2, VOC = 0.68 V, and FF = 0.60; and JJ2 (6.33%) with JSC = 15.69 mA/cm2, VOC = 0.62 V, and FF = 0.65. The power conversion efficiency of JJ6 and JJ1 were higher than JJ2 , demonstrating that the lengthy alkyl groups on the aniline cause a decrease in efficiency of the devices.  相似文献   

5.
We have designed and synthesised novel zinc porphyrin dyes that have a D-π-A system based on porphyrin derivatives containing a carbazole linked triphenylamine (TPA) electron-donating group as the second electron donor and a meso-substituted phenyl carboxyl anchoring group attached at the meso position of the porphyrin ring, yielding push-pull porphyrins as the most efficient green dye for DSSC applications. Under photovoltaic performance measurements, a maximum photon-to-electron conversion efficiency of 5.01% was achieved with the DSSC based on the dye HKK-Por1 (JSC = 10.7 mA/cm2, VOC = 0.67 V, FF = 0.70) under AM1.5 irradiation (100 mW/cm2).  相似文献   

6.
Two donor–bridge–acceptor conjugates (5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminobenzoate)phenyl] porphyrin (TPPZ) and 5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminostyryl)phenyl] porphyrin (TPPX)) were covalently linked to triphenylamine (TPA) at the meso‐position of porphyrin ring. The triphenylamine entities were expected to act as energy donors and the porphyrins to act as an energy acceptor. In this paper, we report on the synthesis of these multibranched‐porphyrin‐functionalized Pt nanocomposites. The conjugates used here not only served as a stabilizer to prevent agglomeration of Pt nanoparticles, but also as a light‐harvesting photosensitizer. The occurrence of photoinduced electron‐transfer processes was confirmed by time‐resolved fluorescence and photoelectrochemical spectral measurements. The different efficiencies for energy and electron transfer in the two multibranched porphyrins and the functionalized Pt nanocomposites were attributed to diverse covalent linkages. Moreover, in the reduction of water to produce H2, the photocatalytic activity of the Pt nanocomposite functionalized by TPPX, in which the triphenylamine and porphyrin moieties are bonded through an ethylene bridge, was much higher than that of the platinum nanocomposite functionalized by TPPZ, in which the two moieties are bonded through an ester. This investigation demonstrates the fundamental advantages of constructing donor–bridge–acceptor conjugates as highly efficient photosensitizers based on efficient energy and electron transfer.  相似文献   

7.
New porphyrin sensitizers based on donor–π‐acceptor (D‐π‐A) approach have been designed, synthesized, characterized by various spectroscopic techniques and their photovoltaic properties explored. N,N′‐Diphenylamine acts as donor, the porphyrin is the π‐spacer, and either carboxylic acid or cyanoacryclic acid acts as acceptor. All compounds were characterized by using 1H NMR spectroscopy, ESI‐MS, UV–visible emission spectroscopies as well as electrochemical methods. The presence of aromatic groups between porphyrin π‐plane and acceptor group push the absorption of both Soret and Q‐bands of porphyrin towards the red region. The electrochemical properties suggests that LUMO of these sensitizers above the TiO2 conduction band. Finally, the device was fabricated using liquid redox electrolyte (I?/I3?) and its efficiency was compared with that of a leading sensitizer.  相似文献   

8.
Novel meso‐ or β‐derivatized porphyrins with a carboxyl group have been designed and synthesized for use as sensitizers in dye‐sensitized solar cells (DSSCs). The position and nature of a bridge connecting the porphyrin ring and carboxylic acid group show significant influences on the spectral, electrochemical, and photovoltaic properties of these sensitizers. Absorption spectra of porphyrins with a phenylethynyl bridge show that both Soret and Q bands are red‐shifted with respect to those of porphyrin 6 . This phenomenon is more pronounced for porphyrins 3 and 4 , which have a π‐conjugated electron‐donating group at the meso position opposite the anchoring group. Upon introduction of an ethynylene group at the meso position, the potential at the first oxidation alters only slightly whereas that for the first reduction is significantly shifted to the positive, thus indicating a decreased HOMO–LUMO gap. Quantum‐chemical (DFT) results support the spectroelectrochemical data for a delocalization of charge between the porphyrin ring and the amino group in the first oxidative state of diarylamino‐substituted porphyrin 5 , which exhibits the best photovoltaic performance among all the porphyrins under investigation. From a comparison of the cell performance based on the same TiO2 films, the devices made of porphyrin 5 coadsorbed with chenodeoxycholic acid (CDCA) on TiO2 in ratios [ 5 ]/[CDCA]=1:1 and 1:2 have efficiencies of power conversion similar to that of an N3 ‐based DSSC, which makes this green dye a promising candidate for colorful DSSC applications.  相似文献   

9.
Four para-dialkylaminophenyl (PDAAP1-PDAAP4) bearing carboxyl groups were studied for application to the dye-sensitized solar cells (DSC). It was found the short spacer CH2 between carboxyl and dialkylaminophenyl chromophore in PDAAP3 and PDAAP4 led to highly efficient monochromatic incident photon-to-current conversion efficiencies (IPCE), however the long alkyl group C4H9 attached on aniline moieties in PDAAP2 and PDAAP4 favored improvement of open-circuit photovoltage. Thus, the solar cell sensitized by PDAAP4, having both short carboxyl groups CH2COOH and long alkyl groups C4H9, exhibited the IPCE maximum of 73% at 670 nm and overall energy conversion efficiency η of 3.06%, representing the highest IPCE and η values so far in dialkylaminophenyl-based organic dye-sensitized semiconductor solar cells. Taking advantage of the highly efficient sensitizing ability of PDAAP4 in far-red region, the data of IPCE above 630 nm of the solar cells were improved greatly by cosensitization with both N3 and PDAAP4. The influences of the TiO2 film thickness and the concentration of 4-tert-butylpyridine (TBP) in electrolyte were also investigated.  相似文献   

10.
We report here electrochemical synthesis of novel soluble donor–acceptor (D–A) polymer with suitably functionalized perylenetetracarboxylic diimide dye derivative covalently linked to carbazole moiety (Cbz‐PDI). The band gap, Eg was measured using UV–Vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Efficient intramolecular electron transfer from carbazole‐donor to perynediimide‐acceptor leads to remarkable fluorescence quenching of the perylene core. Furthermore, spectroelectrochemical property and surface morphology of the polymer film were investigated. Characteristic monoanion and dianion radical bands on the UV–Vis absorption spectra attributed to the electrochemical reduction of the neutral polymer were observed. During the reduction process, red color of the film turned into blue and violet, respectively. Finally, the photovoltaic performance of the D–A double‐cable polymer was checked and nearly 0.1% electrical conversion efficiency is obtained under simulated AM 1.5 solar light with 100 mW/cm2 radiation power. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6280–6291, 2009  相似文献   

11.
Here, a family of donor/acceptor (D/A) alternating copolymers and random two‐acceptor and three‐acceptor copolymers were synthesized via Suzuki polymerization based on heptadecan‐9‐yl substituted carbazole as a donor and 4,7‐Bis(5‐bromothiophene‐2‐yl)benzo[c][1,2,5]thiadiazole (DTBT), 2,5‐diethylhexyl‐3,6‐bis(5‐bromothiophene‐2‐yl)pyrrolo[3,4‐c]‐pyrrole‐1,4‐dione (DPP) and 2,8‐dibromo‐4,10‐bis(2‐ethylhexyl)thieno[2′,3′:5,6] pyrido[3,4‐g]thieno[3,2‐c]isoquinoline‐5,11(4H,10H)‐dione (TPTI) as acceptors. For the first time, a relatively new electron‐deficient TPTI unit was used as an acceptor in carbazole‐based conjugated polymers. Introduction of the electron‐deficient TPTI unit into the polymer backbone increased the open‐circuit voltage (Voc) of the resulting polymer solar cells up to 0.96 V. PCTPTI and PCDTBT‐TPTI exhibited external quantum efficiencies (EQE) up to 75%. All random two‐acceptor copolymers showed broadened absorption profiles compared to the D/A alternating analogues. In order to further improve the light absorption, a random three‐acceptor copolymer was synthesized for the first time, resulting in the broadest absorption in the range of 350–750 nm. Highest occupied molecular orbital (HOMO) energies and Voc values of the resulting polymers could be successfully tuned by introducing different monomer units into the polymer backbone in different ratios. These results indicate that TPTI is a promising acceptor unit for conjugated polymers and that the random copolymer approach is a successful tool for fine tuning of polymer properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2781–2786  相似文献   

12.
A series of pyrenoimidazoles that contained various functional chromophores, such as anthracene, pyrene, triphenylamine, carbazole, and fluorene, were synthesized and characterized by optical, electrochemical, and theoretical studies. The absorption spectra of the dyes are dominated by electronic transitions that arise from the pyrenoimidazole core and the additional chromophore. All of the dyes exhibited blue‐light photoluminescence with moderate‐to‐high quantum efficiencies. They also displayed high thermal stability and their thermal‐decomposition temperatures fell within the range 462–512 °C; the highest decomposition temperature was recorded for a carbazole‐containing dye. The oxidation propensity of the dyes increased on the introduction of electron‐rich chromophores, such as triphenylamine or carbazole. The application of selected dyes that featured additional chromophores such as pyrene, carbazole, and triphenylamine as blue‐emissive dopants into multilayered organic light‐emitting diodes with a 4,4′‐bis(9H‐carbazol‐9‐yl)biphenyl (CBP) host was investigated. Devices that were based on triphenylamine‐ and carbazole‐containing dyes exhibited deep‐blue emission (CIE 0.157, 0.054 and 0.163, 0.041), whereas a device that was based on a pyrene‐containing dye showed a bright‐blue emission (CIE 0.156, 0.135).  相似文献   

13.
To exploit an effective way to improve polymeric photovoltaic performance, a series of dithiophene‐benzothiadiazole‐alt‐fluorene copolymers containing carbazole groups at C‐9 positions of the alternating fluorene units (PFO‐FCz‐DBT) were synthesized and characterized. The effect of the carbazole groups on the optophysical, electrochemical, and photovoltaic properties of these copolymers was investigated. By comparison, this type of copolymers with carbazole units exhibited significantly improved photovoltaic properties than poly(2,7‐(9,9‐dioctyl‐fluorene)‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PFO‐DBT) in the bulk heterojunction solar cells. A maximum power‐conversion efficiency (PCE) of 2.41% and a highest short‐circuit current density (Jsc) of 9.68 mA cm?2 were obtained for the PFO‐FCz‐DBT30, which are about two times higher than the corresponding levels for the PFO‐DBT30. This work demonstrated that introducing a hole‐transporting carbazole unit into copolymer is a simple and effective method to improve the Jsc and PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The polycarbazoles have been proved to efficiently suppress the keto defect emission. Three carbazole‐based conjugated polymers, poly[9‐methyl‐3‐(4‐vinylstyryl)‐9H‐carbazole] (PBC), poly[9‐methyl‐3‐(2‐(5‐vinylthiophen‐2‐yl)vinyl)‐9H‐carbazole] (PBT) and poly[9‐methyl‐3‐(2‐(5‐vinylfuran‐2‐yl)vinyl)‐9H‐carbazole] (PBF), were investigated by quantum‐chemical techniques, and gain a detailed understanding of the influence of carbazole units and the introduction of electron‐donating on the electronic and optical properties. The electronic properties of the neutral molecules, HOMO‐LUMO gaps (ΔE), in addition to ionization potential (Ip) and electron affinity (Ea), are studied using B3LYP density functional theory. The lowest excitation energies (Eg) and the absorption wavelength are studied using the time dependent density functional theory (TDDFT). The calculated results show that all three series of polymers have good planarity. And the highest‐occupied molecular orbital (HOMO) energies lift about 0.36–0.61 eV and thus the IP decrease about 0.01–0.19 eV compared to polycarbazole, suggesting the significant improved hole‐accepting and transporting abilities. By introducing the electron‐donating 1,4‐divinylphenylene or 2,5‐divinylthiophene or 2,5‐divinylfuran units in the backbone, and the lowest‐unoccupied molecular orbital (LUMO) energies decrease 0.20–0.39 eV. In addition, PBC, PBT and PBF have longer maximal absorption wavelengths than polycarbazole. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 706–714, 2009  相似文献   

15.
Designing low band‐gap‐conjugated polymers coupled with low HOMO levels attracts great attention in the field of polymer solar cells (PSCs). By using donor–acceptor (D‐A) copolymerization strategy, we designed and synthesized a series of low band‐gap copolymers with deep HOMO levels via introducing an isoindigo (IID) acceptor unit in the copolymers with the donor unit of fluorene (F) (PIID‐F), carbazole (Cz) (PIID‐Cz), thiophene (Th) (PIID‐Th), dithiophene (DTh) (PIID‐DTh), or dithienosilole (DTS) (PIID‐DTS). The HOMO level of the copolymers, measured by electrochemical cyclic voltammetry, varies from ?5.3 eV to ?5.8 eV, depending on different donor units in the copolymers. However, the LUMO levels of all the copolymers are fixed at about ?3.6 eV, which is mainly determined by IID acceptor unit due to its strong electron‐withdrawing ability. The new results will provide an effect help in designing IID based molecular structures. Among the copolymers, PIID‐DTS has a low band gap of 1.58 eV and possesses a low‐lying HOMO energy level of ?5.33 eV. The PSCs based on PIID‐DTS as donor and PC70BM as acceptor exhibited a high open‐circuit voltage (Voc) of 0.93 V and a primary power conversion efficiency of 2.45%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3477–3485  相似文献   

16.
Four organic D–A –π‐A‐featured sensitizers (TQ1, TQ2, IQ1, and IQ2) have been studied for high‐efficiency dye‐sensitized solar cells (DSSCs). We employed an indoline or a triphenylamine unit as the donor, cyanoacetic acid as the acceptor/anchor, and a thiophene moiety as the conjugation bridge. Additionally, an electron‐withdrawing quinoxaline unit was incorporated between the donor and the π‐conjugation unit. These sensitizers show an additional absorption band covering the broad visible range in solution. The contribution from the incorporated quinoxaline was investigated theoretically by using DFT and time‐dependent DFT. The incorporated low‐band‐gap quinoxaline unit as an auxiliary acceptor has several merits, such as decreasing the band gap, optimizing the energy levels, and realizing a facile structural modification on several positions in the quinoxaline unit. As demonstrated, the observed additional absorption band is favorable to the photon‐to‐electron conversion because it corresponds to the efficient electron transitions to the LUMO orbital. Electrochemical impedance spectroscopy (EIS) Bode plots reveal that the replacement of a methoxy group with an octyloxy group can increase the injection electron lifetime by a factor of 2.4. IQ2 and TQ2 can perform well without any co‐adsorbent, successfully suppress the charge recombination from TiO2 conduction band to I3? in the electrolyte, and enhance the electron lifetime, resulting in a decreased dark current and enhanced open circuit voltage (Voc) values. By using a liquid electrolyte, DSSCs based on dye IQ2 exhibited a broad incident photon‐to‐current conversion efficiency (IPCE) action spectrum and high efficiency (η=8.50 %) with a short circuit current density (Jsc) of 15.65 mA cm?2, a Voc value of 776 mV, a fill factor (FF) of 0.70 under AM 1.5 illumination (100 mW cm?2). Moreover, the overall efficiency remained at 97 % of the initial value after 1000 h of visible‐light soaking.  相似文献   

17.
An eco‐friendly method has been developed for the synthesis of 2‐amino‐4‐(9H‐carbazole‐3‐yl)thiophene‐3‐carbonitriles from preliminary carbazole ( 1 ) through an intermediate of 2‐(1‐(9H‐carbazole‐3‐yl)ethylidene)malononitriles using the Knoevenagel condensation followed by the Gewald reaction. On the other hand, the target compounds could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of 1‐(9H‐carbazole‐3‐yl)ethanone ( 3 ), malononitrile, and elemental sulfur. The merits of this preparation are mild reaction conditions. The Gewald reaction is executed with inorganic base NaHCO3 (H2O) in tetrahydrofuran, easy work‐up procedure with good yields.  相似文献   

18.
Expanded porphyrins with the absorption profile down to the infrared region through increased π‐conjugation are suitable candidates for a low energy sensitizer. Oxasmaragdyrin boron complexes, a class of aromatic‐core‐modified expanded porphyrin with 22 π‐electrons, have been recently utilized as an efficient low energy sensitizer in dye‐sensitized solar cells. In this paper, we have prepared a series of eight novel boryl oxasmaragdyrins through molecular engineering on the periphery and their overall photovoltaic performances in dye‐sensitized solar cells are evaluated. With the help of photophysical, electrochemical, and photovoltaic studies, it is revealed that molecular structure, especially the number and position of the donor–acceptor groups play a pivotal role in their photovoltaic performance. Presence of the two well‐separated split Soret bands in the 400–500 nm region of UV/Vis spectrum ensures broader coverage of absorption wavelengths. Even though the two‐anchoring‐group dyes ( SM5 – SM8 ) bind strongly to TiO2 compared to one‐anchoring‐group dyes ( SM1 – SM4 ), the latter have superior photovoltaic performance than the former. Dye SM1 , with two hexyloxyphenyl donors and one carboxylic acid anchor showed the best overall conversion efficiency of 4.36 % (JSC=10.91 mA cm?2; VOC=0.59 V; FF=0.68). This effective modulation of photovoltaic performance through structural engineering of the dyes will serve as a guideline for the future design of efficient low energy light‐harvesting sensitizers.  相似文献   

19.
Hybrid porphyrin tapes 3 and 4 , consisting of a mixture of 3,5‐di‐tert‐butylphenyl‐substituted donor‐type ZnII–porphyrins and pentafluorophenyl‐substituted acceptor‐type ZnII–porphyrins, were prepared by a synthetic route involving cross‐condensation reaction of a NiII–porphyrinyldipyrromethane and pentafluorophenyldipyrromethane with pentafluorobenzaldehyde followed by appropriate demetalation, remetalation, and oxidative ring‐closure reaction. The NiII‐substituted porphyrin tapes 5 (Ni‐Zn‐Ni) and 6 (Ni‐H2‐Ni) were also prepared through similar routes. The hybrid porphyrin tapes 3 and 4 are more soluble and more stable than normal porphyrin tapes 1 and 2 consisting of only donor‐type ZnII–porphyrins. The solid‐state and crystal packing structures of 3 , 4 , and 5 were elucidated by single‐crystal X‐ray diffraction analysis. Singly mesomeso‐linked hybrid porphyrin arrays 12 and 14 exhibit redox potentials that roughly correspond to each constituent porphyrin segments, while the redox potentials of the hybrid porphyrin tapes 3 and 4 are positively shifted as a whole. The two‐photon absorption (TPA) values of 1–6 were measured by using a wavelength‐scanning open aperture Z‐scan method and found to be 1900, 21 000, 2200, 27 000, 24 000, and 26 000 GM, respectively. These results illustrate an important effect of elongation of π‐electron conjugation for the enhancement of TPA values. The hybrid porphyrin tapes show slightly larger TPA values than the parent ones.  相似文献   

20.
Betapyrrole‐substituted porphyrin dyads connected by ethynyl linkage to N‐butylcarbazole or triphenylamine donors are reported. Donor‐π‐acceptor type betasubstituted porphyrin dyads and their Zn(II) and Pd(II) complexes were characterized by MALDI‐MS, NMR, UV‐vis absorption, fluorescence and cyclic voltammetry techniques. The S1 emission dynamics were analyzed by time‐resolved spectroscopy (TCSPC); dyads exhibited efficient energy transfer up to 93% from beta‐donors (N‐butylcarbazole or triphenylamine group) to the porphyrin core. The efficiency of energy transfer for the beta‐substituted porphyrin dyads were much higher than those of the corresponding meso‐substituted porphyrin dyads, reflecting enhanced communications between the beta‐donors and the porphyrin core. The Pd(II) dyads, showed characteristic phosphorescence in the near IR region and very efficient singlet oxygen quantum yields (53–60%); these dyads are promising candidates for photocatalytic oxidations of organic compounds. The donor‐acceptor interaction between the porphyrin core and the beta‐donors was supported by the DFT studies in the porphyrin dyads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号