首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
The metal‐free activation of hydrogen by frustrated Lewis pairs (FLPs) is a valuable method for the hydrogenation of polarized unsaturated molecules ranging from imines, enamines, and silyl enol ethers to heterocycles. However, one of the most important applications of hydrogenation technology is the conversion of unsaturated hydrocarbons into alkanes or alkenes. Despite the fast development of the FLP chemistry, such reactions proved as highly challenging. This Minireview provides an overview of the basic concepts of FLP chemistry, the challenge in the hydrogenation of unsaturated hydrocarbons, and first solutions to this central transformation.  相似文献   

4.
5.
6.
刘勇兵  杜海峰 《化学学报》2014,72(7):771-777
不对称催化氢化反应在有机合成化学中占有重要地位,是获得光学活性化合物最有效的手段之一. 近五十年,过渡金属催化的不对称氢化反应得到了快速发展,取得了令人瞩目的成就. 相对而言,非金属催化不对称氢化研究刚刚起步,面临着诸多挑战性难题. “受阻路易斯酸碱对”是由大位阻路易斯酸和路易斯碱组成,由于位阻因素,它们不能形成传统的路易斯酸碱加合物,从而表现出一些特殊的性质和反应活性. 自2006年Stephan小组首次发现“受阻路易斯酸碱对”可逆活化氢气以来,它在氢气,二氧化碳,一氧化氮等小分子活化及催化氢化方面得到了广泛应用. 同时,也为非金属催化的不对称氢化反应提供了难得的机遇,并取得了一些重要研究进展. 本文从手性底物诱导和手性催化剂控制两方面介绍“受阻路易斯酸碱对”在不对称氢化反应中的研究成果,并对这一新兴领域未来的发展进行展望.  相似文献   

7.
A series of ketones and aldehydes are reduced in toluene under H2 in the presence of 5 mol % B(C6F5)3 and either cyclodextrin or molecular sieves affording a facile metal‐free protocol for reduction to alcohols. Similar treatment of aryl ketones resulted in metal‐free deoxygenation yielding aromatic hydrocarbons.  相似文献   

8.
9.
N‐Phosphine oxide substituted imidazolylidenes (PoxIms) have been synthesized and fully characterized. These species can undergo significant changes to the spatial environment surrounding their carbene center through rotation of the phosphine oxide moiety. Either classical Lewis adducts (CLAs) or frustrated Lewis pairs (FLPs) are thus formed with B(C6F5)3 depending on the orientation of the phosphine oxide group. A strategy to reactivate FLPs from CLAs by exploiting molecular motions that are responsive to external stimuli has therefore been developed. The reactivation conditions were successfully controlled by tuning the strain in the PoxIm–B(C6F5)3 complexes so that reactivation only occurred above ambient temperature.  相似文献   

10.
11.
The autoinduced, frustrated Lewis pair (FLP)‐catalyzed hydrogenation of 16‐benzene‐ring substituted N‐benzylidene‐tert‐butylamines with B(2,6‐F2C6H3)3 and molecular hydrogen was investigated by kinetic analysis. The pKa values for imines and for the corresponding amines were determined by quantum‐mechanical methods and provided a direct proportional relationship. The correlation of the two rate constants k1 (simple catalytic cycle) and k2 (autoinduced catalytic cycle) with pKa difference between imine and amine pairs (ΔpKa) or Hammett's σ parameter served as useful parameters to establish a structure–reactivity relationship for the FLP‐catalyzed hydrogenation of imines.  相似文献   

12.
13.
14.
In order to use H2 as a clean source of electricity, prohibitively rare and expensive precious metal electrocatalysts, such as Pt, are often used to overcome the large oxidative voltage required to convert H2 into 2 H+ and 2 e?. Herein, we report a metal‐free approach to catalyze the oxidation of H2 by combining the ability of frustrated Lewis pairs (FLPs) to heterolytically cleave H2 with the in situ electrochemical oxidation of the resulting borohydride. The use of the NHC‐stabilized borenium cation [(IiPr2)(BC8H14)]+ (IiPr2=C3H2(NiPr)2, NHC=N‐heterocyclic carbene) as the Lewis acidic component of the FLP is shown to decrease the voltage required for H2 oxidation by 910 mV at inexpensive carbon electrodes, a significant energy saving equivalent to 175.6 kJ mol?1. The NHC–borenium Lewis acid also offers improved catalyst recyclability and chemical stability compared to B(C6F5)3, the paradigm Lewis acid originally used to pioneer our combined electrochemical/frustrated Lewis pair approach.  相似文献   

15.
B(C6F5)3 and P(MeNCH2CH2)3N form a classical Lewis adduct, (C6F5)3BP(MeNCH2CH2)3N. Although (C6F5)3BP(MeNCH2CH2)3N does not exhibit spectroscopic evidence of dissociation into its constituent acid and base, products of frustrated Lewis pair (FLP) addition reactions are seen with PhNCO, PhCH2N3, PhNSO, and CO2. Computational studies show that thermal access to the dissociated acid and base permits FLP reactivity to proceed. These results demonstrate that FLP reactivity extends across the entire continuum of equilibria governing Lewis acid‐base adducts.  相似文献   

16.
The activation of perfluoroalkyl iodides by the frustrated Lewis pair tris(pentafluorophenyl)borane and tri‐tert‐butylphosphine is described. By abstraction of both a fluorine and an iodine atom, an iodophosphonium fluoroborate salt is formed. In the presence of alkenes the corresponding iodoperfluoroalkylation products are generated regioselectively. First mechanistic investigations support a radical mechanism.  相似文献   

17.
18.
“失配的Lewis对”(Frustrated Lewis Pairs,FLPs)作为有机化学领域的新概念,在非金属活化H2,CO2和NH3等小分子方面的研究和应用格外引人注目.以“失配的Lewis对”为催化剂,直接以氢气作为氢源,非金属催化氢化还原醛、烯胺、亚胺、腈和二氧化碳等获得了很好的结果.手性“失配的Lewis对”(Chiral Frustrated Lewis Pairs,Chiral FLPs)在不对称催化氢化还原亚胺的反应中也呈现出较高的光学选择性,产物胺的对映体过量最高达83% ee.综述了近几年“失配的Lewis对”在非金属催化氢化研究领域的进展情况.  相似文献   

19.
Reactions of phosphine‐derived carbenes with 9‐borabicyclo[3.3.1]nonane (9‐BBN) result in ring‐expansion reactions to generate novel intramolecular frustrated Lewis pairs (FLPs). These FLPs effect the catalytic reduction of CO2 in the presence of boranes to give BOB and methoxy‐borate species.  相似文献   

20.
The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal‐free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号