首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A “clickable” vitamin B12 derivative possessing the azide functionality at the 5′‐position was synthesized by means of a two‐step procedure on the gram scale. The reaction of cobalamin with mesyl chloride (MsCl) afforded the 5′‐OMs derivative, which was subsequently transformed to the desired 5′‐azide, the structure of which was confirmed using X‐ray analysis. It proved to be reactive in the azide–alkyne 1,3‐dipolar cycloaddition reaction to give substituted triazoles in high yields. A study of the reaction conditions and the scope of the process are reported.  相似文献   

3.
We describe a facile, one‐pot, two‐step polymerization towards synthesizing block co‐polymers bearing reactive isocyanate functional groups. Reversible addition fragmentation chain transfer (RAFT) polymerization is used to mediate the co‐polymerization of isocyanate‐bearing monomers dimethyl meta‐isopropenyl benzyl isocyanate (TMI) and 2‐isocyanatoethyl methacrylate (ICEMA) with styrene and methyl methacrylate (MMA), respectively. ICEMA was incorporated into the polymer at a faster rate than TMI and its unhindered isocyanate group was found to be more reactive than the hindered isocyanate group of TMI. Both the TMI/styrene and the MMA/ICEMA systems maintain the reactivity of the isocyanate functionality, which was exploited by attaching representative hydroxyl‐bearing small and large molecules as well as solid substrates to the block co‐polymers. Thus, we demonstrate the versatility of the block co‐polymer system as a basis for forming branched polymers or as grafts for a solid substrate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
We describe the synthesis of a highly water‐soluble cryptophane 1 that can be seen as a universal platform for the construction of 129Xe magnetic resonance imaging (MRI)‐based biosensors. Compound 1 is easily functionalized by Huisgen cycloaddition and exhibits excellent xenon‐encapsulation properties. In addition, 1 is nontoxic at the concentrations typically used for hyperpolarized 129Xe MRI.  相似文献   

5.
“Click” chemistry represents one of the most powerful approaches for linking molecules in chemistry and materials science. Triggering this reaction by mechanical force would enable site‐ and stress‐specific “click” reactions—a hitherto unreported observation. We introduce the design and realization of a homogeneous Cu catalyst able to activate through mechanical force when attached to suitable polymer chains, acting as a lever to transmit the force to the central catalytic system. Activation of the subsequent copper‐catalyzed “click” reaction (CuAAC) is achieved either by ultrasonication or mechanical pressing of a polymeric material, using a fluorogenic dye to detect the activation of the catalyst. Based on an N‐heterocyclic copper(I) carbene with attached polymeric chains of different flexibility, the force is transmitted to the central catalyst, thereby activating a CuAAC in solution and in the solid state.  相似文献   

6.
7.
A simple, versatile, protein‐repulsive, substrate‐independent biomimetic surface modification is presented that is based on the creation of a PEO brush on a polydopamine anchoring layer and its capacity for selective follow‐up modifications with various ligands using a copper‐catalyzed alkyne‐azide cycloaddition reaction. The desired surface concentration of peptide biomimetic ligands can be controlled by adjusting the peptide concentration in the reaction mixture, then measuring the activity of 125I‐radiolabeled peptides that are immobilized on the substrates. The performance of the prepared substrates is tested in cell cultures with MEF cells and a human ECC line.

  相似文献   


8.
Pseudocontact shifts (PCS) induced by paramagnetic lanthanide ions provide unique long‐range structural information in nuclear magnetic resonance (NMR) spectra, but the site‐specific attachment of lanthanide tags to proteins remains a challenge. Here we incorporated p‐azido‐phenylalanine (AzF) site‐specifically into the proteins ubiquitin and GB1, and ligated the AzF residue with alkyne derivatives of small nitrilotriacetic acid and iminodiacetic acid tags using the CuI‐catalysed “click” reaction. These tags form lanthanide complexes with no or only a small net charge and produced sizeable PCSs with paramagnetic lanthanide ions in all mutants tested. The PCSs were readily fitted by single magnetic susceptibility anisotropy tensors. Protein precipitation during the click reaction was greatly alleviated by the presence of 150 mM NaCl.  相似文献   

9.
Comb‐shaped glycopolymer/peptide bioconjugates are constructed by grafting reduced glutathione (GSH) onto acrylate‐functional block glycocopolymers via thiol‐ene click chemistry. In aqueous solution, the glycopolymer/GSH bioconjugate self‐assembles to sugar‐installed spherical micelles. The size of micelles decreases with increasing pH, demonstrating pH‐responsive character. The isoelectric point (IEP) of the PMAGlc/GSH bioconjugate is estimated to be 3.43. The micelles show a specific interaction with the protein Concanavalin A. At endosomal pH, the PMAGlc/GSH bioconjugate can gradually degrade. These pH‐responsive glycopolymer/peptide micelles with biological recognition and degradation can be used as multifunctional nanocarriers for targeted drug delivery.

  相似文献   


10.
11.
Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano‐ and microscaled fillers, or via new chemical concepts such as self‐healing materials. A capsule‐based self‐healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene‐based filler, the latter additionally acting as a catalyst for the self‐healing reaction. The concept is based on “click”‐based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a “reactive glue” at the cracked site. A capsule‐based healing system via a graphene‐based Cu2O (TRGO‐Cu2O‐filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room‐temperature self‐healing within 48 h is achieved, with the investigated specimen containing TRGO‐Cu2O demonstrating significantly faster self‐healing compared to homogeneous (Cu(PPh3)3F, Cu(PPh3)3Br), and heterogeneous (Cu/C) copper(I) catalysts.

  相似文献   


12.
13.
The synthesis and self‐assembly of peptide–polymer conjugates into fibrillar nanostructures are reported, based on the amyloidogenic peptide KLVFF. A strategy for rational synthesis of polymer–peptide conjugates is documented via tethering of the amyloidogenic peptide segment LVFF (Aβ17‐20) and its modified derivative FFFF to the hydrophilic poly(ethylene glycol) monomethyl ether (mPEG) polymer via thio‐bromo based “click” chemistry. The resultant conjugates mPEG‐LVFF‐OMe and mPEG‐FFFF‐OMe are purified via preparative gel permeation chromatography technique (with a yield of 61% and 64%, respectively), and are successfully characterized via combination of spectroscopic and chromatographic methods, including electrospray ionization time‐of‐flight mass spectrometry. The peptide‐guided self‐assembling behavior of the as‐constructed amphiphilic supramolecular materials is further investigated via transmission electron microscopic and circular dichroism spectroscopic analysis, exhibiting fibrillar nanostructure formation in binary aqueous solution mixture.  相似文献   

14.
The development of a novel nucleophilic thio‐bromo “Click” reaction, specifically base‐mediated thioetherification of thioglycerol with α‐bromoesters, is reported. Combination of this thio‐bromo click reaction with subsequent acylation with 2‐bromopropionyl bromide provides an iterative two‐step divergent growth approach to the synthesis of a new class of poly(thioglycerol‐2‐propionate) (PTP) dendrimers. This approach is demonstrated in the rapid preparation of four generation (G1–G4) of PTP dendrimers with high‐structural fidelity. The isolated G1–G4 bromide‐terminated dendrimers can be used directly as dendritic macroinitiators for the synthesis of star‐polymers via SET‐LRP. Additionally, the intermediate hydroxy‐terminated dendrimers are analogs of other water‐soluble polyester and polyether dendrimers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3931–3939, 2009  相似文献   

15.
Degradable polyester‐based star polymers with a high level of functionality in the arms were synthesized via the “arms first” approach using an acetylene‐functional block copolymer macroinitiator. This was achieved by using 2‐hydroxyethyl 2′‐methyl‐2′‐bromopropionate to initiate the ring‐opening polymerization (ROP) of caprolactone monomer followed by an atom transfer radical polymerization (ATRP) of a protected acetylene monomer, (trimethylsilyl)propargyl methacrylate. The hydroxyl end‐group of the resulting block copolymer macroinitiator was subsequently crosslinked under ROP conditions using a bislactone monomer, 4,4′‐bioxepanyl‐7,7′‐dione, to generate a degradable core crosslinked star (CCS) polymer with protected acetylene groups in the corona. The trimethylsilyl‐protecting groups were removed to generate a CCS polymer with an average of 1850 pendent acetylene groups located in the outer block segment of the arms. The increased functionality of this CCS polymer was demonstrated by attaching azide‐functionalized linear polystyrene via a copper (I)‐catalyzed cycloaddition reaction between the azide and acetylene groups. This resulted in a CCS polymer with “brush‐like” arm structures, the grafted segment of which could be liberated via hydrolysis of the polyester star structure to generate molecular brushes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1485–1498, 2009  相似文献   

16.
17.
18.
19.
Amphiphilic block copolymers can be conveniently prepared via convergent syntheses, allowing each individual polymer block to be prepared via the polymerization technique that gives the best architectural control. The convergent “click‐chemistry” route presented here, gives access to amphiphilic diblock copolymers prepared from a ring opening metathesis polymer and polyethylene glycol. Because of the high functional group tolerance of ruthenium carbene initiators, highly functional ring opening metathesis polymerization (ROMP) polymer blocks can be prepared. The described synthetic route allows the conjugation of these polymer blocks with other end‐functional polymers to give well‐defined and highly functional amphiphilic diblock copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2913–2921, 2008  相似文献   

20.
The use of a thio‐bromo click strategy as an efficient postpolymerization tool is described. Norbornene derivatives bearing an α‐bromo ester could be polymerized using Grubbs 2nd generation initiator to provide α‐bromo ester‐containing homo‐and block copolymers that could be efficiently functionalized through reactions with various thiols. A one‐pot strategy was also used, in which up to four different thiols were reacted simultaneously. This chemistry could also be used as an efficient cross‐linking strategy to form ROMP‐based gels as well as a tool for terminal functionalization of polypropylene‐based oligomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 179–185  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号