首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photocatalytic reactions, including hydrogen/oxygen generation, water splitting and hydrogen peroxide production, are regarded as a renewable and promising method to harvest and use solar energy. The key to achieving this goal is to explore efficient photocatalysts with high productivity. Recently, two‐dimensional (2D) polymeric carbon nitride nanosheets were reported as efficient photocatalysts toward various products because of their outstanding properties, such as high specific surface area, more reactive sites, the quantum effect in thickness and unique electronic properties. This minireview attempts to overview recent advances in the preparation, structure and properties of crystalline and amorphous carbon nitride nanosheets, and their applications in photocatalytic hydrogen/oxygen evolution, water splitting and hydrogen peroxide production. We also thoroughly discuss the effect of defects, dopants and composites on the photocatalytic efficiency of these carbon nitride nanosheets. Finally, we outlook the ongoing opportunities and future challenges for 2D carbon nitride nanosheets in the field of photocatalysis.  相似文献   

2.
Graphite carbon nitride (g‐C3N4) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g‐C3N4 nanotubes were synthesized by thermal polymerization of freeze‐dried urea and CQDs precursor. The CQD‐implanted g‐C3N4 nanotubes (CCTs) could simultaneously facilitate photoelectron transport and suppress charge recombination through their specially coupled heterogeneous interface. The electronic structure and morphology were optimized in the CCTs, contributing to greater visible light absorption and a weakened barrier of the photocarrier transfer. As a result, the CCTs exhibited efficient photocatalytic performance under light irradiation with a high H2 production rate of 3538.3 μmol g?1 h?1 and a notable quantum yield of 10.94 % at 420 nm.  相似文献   

3.
针对氮化碳可见光利用率低和在光催化过程中光生电子与空穴易于复合的缺点,通过钴、碳共掺杂提升其光催化性能。以尿素为前驱体,维生素B12(VB12)为钴源和碳源,将二者的混合物进行一步煅烧,制备钴、碳共掺杂氮化碳(CNCoC)。结果表明,钴、碳共掺杂对氮化碳的微观形貌、骨架结构和官能团都没有造成明显影响;但是增大了产物的比表面积,调节了产物的能带结构,增加了其对可见光的吸收。更重要的是,相比于单一元素碳的掺杂,钴、碳共掺杂具有协同作用,能够更有效地提升光生电子和空穴的分离和传递效率。因此,加入6 mg VB12制备的CNCoC-6的可见光光催化分解水产氢速率达到了56.1 μmol·h-1,是纯氮化碳(CN)的3.05倍;而碳掺杂氮化碳(CNC-6)的产氢速率仅为CN的2.55倍。  相似文献   

4.
以草酸为氧源,二聚氰胺和尿素为原料,采用两步热聚合方式合成氧掺杂氮化碳纳米片催化剂(CNO)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、X射线光电子能谱分析(XPS)、荧光光谱(PL)及电化学测试等技术对催化剂进行结构表征分析。在可见光照射下通过分解水制氢反应对CNO的光催化还原性能进行评价。结果表明,草酸中的O元素通过取代氮化碳三嗪环结构中N原子直接键合到sp~2杂化碳上,形成O掺杂CNO。经O掺杂改性后的氮化碳具有良好的层状堆积结构,可见光吸收性明显提高,同时禁带宽度降低。O掺杂的引入加速了光生电子-空穴对的分离和传输,能大幅度提高氮化碳的光催化分解水制氢性能,在可见光照下达88.6μmol·h~(-1),是未掺杂CN的3.91倍。  相似文献   

5.
A novel hybrid photocatalyst composed of hollow carbon nanospheres (NCS) and graphitic carbon nitride (CN) curly nanosheets has been prepared by the calcination of a NCS precursor and freeze-dried urea. The optimized photocatalyst exhibits an efficient photocatalytic performance under visible light irradiation with a highest H2 generation rate of 3612.3 μmol g−1 h−1, leading to an apparent quantum yield of 10.04 % at 420 nm, five times higher than the widely reported benchmark photocatalyst CN (2.01 % AQY). The materials characterization shows that NCS-modified CN curly nanosheets can promote photoelectron transfer and suppress charge recombination through their special coupling interface and NCS as an electron acceptor, which significantly improves the photocatalytic efficiency. Thus, this study provides an efficient strategy for the design of highly efficient photocatalyst, particularly suitable for a totally metal-free photocatalytic system.  相似文献   

6.
通过硬模板法,采用氰胺前驱物和二氧化硅纳米管(SiO2-NTs)模板,合成石墨相氮化碳纳米管(CN-NTs)光催化剂。采用扫描电镜(SEM)、透射电镜(TEM)、X射线粉末衍射(XRD)、傅立叶变换红外光谱(FT-IR)、氮气吸附/脱附测试、紫外可见漫反射光谱(UV-Vis DRS)、荧光光谱、热重分析(TGA)等手段对CN-NTs催化剂的结构与性能进行表征。结果表明,CN-NTs的化学组成是石墨相氮化碳(g-C3N4),形貌为均匀的纳米管,且是介孔材料。与体相氮化碳(B-CN)和介孔石墨相氮化碳(mpg-CN)相比,CN-NTs的光吸收带边蓝移到440 nm,荧光发射谱的峰强减弱。在可见光(λ>420 nm)照射下,CN-NTs具有较高的光催化分解水活性,产氢速率为58 μmol/h,且表现出良好的光催化活性稳定性和化学结构稳定性。研究结果表明纳米管状结构能有效促进g-C3N4半导体激子解离,提高光生电子-空穴的分离效率,进而显著优化g-C3N4的光催化产氢性能。  相似文献   

7.
8.
An interconnected framework of mesoporous graphitic‐C3N4 nanofibers merged with in situ incorporated nitrogen‐rich carbon has been prepared. The unique composition and structure of the nanofibers as well as strong coupling between the components endow them with efficient light‐harvesting properties, improved charged separation, and a multidimensional electron transport path that enhance the performance of hydrogen production. The as‐obtained catalyst exhibits an extremely high hydrogen‐evolution rate of 16885 μmol h?1 g?1, and a remarkable apparent quantum efficiency of 14.3 % at 420 nm without any cocatalysts, which is much higher than most reported g‐C3N4‐based photocatalysts even in the presence of Pt‐based cocatalysts.  相似文献   

9.
Hydrogen peroxide (H2O2) has received increasing attention because it is not only a mild and environmentally friendly oxidant for organic synthesis and environmental remediation but also a promising new liquid fuel. The production of H2O2 by photocatalysis is a sustainable process, since it uses water and oxygen as the source materials and solar light as the energy. Encouraging processes have been developed in the last decade for the photocatalytic production of H2O2. In this Review we summarize research progress in the development of processes for the photocatalytic production of H2O2. After a brief introduction emphasizing the superiorities of the photocatalytic generation of H2O2, the basic principles of establishing an efficient photocatalytic system for generating H2O2 are discussed, highlighting the advanced photocatalysts used. This Review is concluded by a brief summary and outlook for future advances in this emerging research field.  相似文献   

10.
氮化碳聚合物半导体光催化   总被引:1,自引:0,他引:1  
半导体光催化技术通过太阳光驱动一系列重要的化学反应,将低密度的太阳能转化为高密度的化学能或直接降解和矿化有机污染物,在解决能源短缺和环境污染等问题方面具有重要的应用前景。最近,聚合物半导体石墨相氮化碳(g-C3N4),由于优异的化学稳定性和独特的电子能带结构,被作为一种廉价、稳定、不含金属组分的可见光光催化剂广泛应用于太阳能的光催化转化,如光解水产氢产氧、有机选择性光合成和有机污染物的降解等,引起人们的关注。本文将围绕g-C3N4光催化剂的改性研究,综述国内外近年来在g-C3N4光催化领域所取得一些重要进展,比如理论研究g-C3N4的组成结构及化学性质、金属/非金属掺杂调控g-C3N4的半导体能带结构、软/硬模板法优化g-C3N4的纳米结构、表面化学修饰改进g-C3N4的表面反应动力学过程及半导体复合提高光生载流子的分离效率等。最后,本文还对g-C3N4光催化的未来发展趋势进行展望。  相似文献   

11.
Inspired by the crucial roles of phosphates in natural photosynthesis, we explored an environmental “phosphorylation” strategy for boosting photocatalytic H2 production over g‐C3N4 nanosheets under visible light. As expected, a substantial improvement was observed in the rate of H2 evolution to 947 μmol h?1, and the apparent quantum yield was as high as 26.1 % at 420 nm. The synergy of enhanced proton reduction and improved hole oxidation is proposed to account for the markedly increased activity. Our findings may provide a promising and facile approach to highly efficient photocatalysis for solar‐energy conversion.  相似文献   

12.
13.
Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6‐triaminopyrimidine as a dopant. The solid state NMR spectrum of 15N‐enriched CN confirms the triazine as a building unit. Controlling the amount and arrangements of dopants in the CN structure can dramatically enhance the photocatalytic performance for H2 evolution. The polytriazine imide (PTI) exhibits the apparent quantum efficiency (AQE) of 15 % at 400 nm. This method successfully enables a substantial amount of visible light to be harvested for H2 evolution, and provides a promising route for the rational design of a variety of highly active crystalline CN photocatalysts.  相似文献   

14.
Polymeric or organic semiconductors are promising candidates for photocatalysis but mostly only show moderate activity owing to strongly bound excitons and insufficient optical absorption. Herein, we report a facile bottom‐up strategy to improve the activity of a carbon nitride to a level in which a majority of photons are really used to drive photoredox chemistry. Co‐condensation of urea and oxamide followed by post‐calcination in molten salt is shown to result in highly crystalline species with a maximum π–π layer stacking distance of heptazine units of 0.292 nm, which improves lateral charge transport and interlayer exciton dissociation. The addition of oxamide decreases the optical band gap from 2.74 to 2.56 eV, which enables efficient photochemistry also with green light. The apparent quantum yield (AQY) for H2 evolution of optimal samples reaches 57 % and 10 % at 420 nm and 525 nm, respectively, which is significantly higher than in most previous experiments.  相似文献   

15.
Heptazine‐based polymeric carbon nitrides (PCN) are promising photocatalysts for light‐driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom‐up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi‐homogeneous conditions. The superior performance of water‐soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4‐methoxybenzyl alcohol and benzyl alcohol or lignocellulose‐derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re‐dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.  相似文献   

16.
采用溶剂热法制备了具有二维/一维(2D/1D)纳米结构的MoS_2纳米片/管状g-C_3N_4(MS/TCN)复合光催化剂,并在可见光照射下用于光催化海水产氢。实验结果表明MS/TCN复合材料的光催化活性优于纯相TCN。此外,MS/TCN-0.5样品(含有0.5%(w/w)的MoS_2)显示出最佳的析氢活性,其产H_2速率为85.1μmol·h~(-1),且在进行循环性测试后,活性没有明显降低。  相似文献   

17.
负载型Pd基催化剂是最有效的甲酸分解(FAD)制氢催化剂之一,其中氮化碳载体的N含量较高,但是通常一步热解法制备的氮化碳为块状,难以有效分散表面金属纳米粒子(NPs)。 本文通过将尿素前驱体在溶剂化作用后热解得到功能化氮化碳,以此为载体,利用阴离子交换和硼氢化钠直接还原法制备了功能化氮化碳负载的Pd基催化剂(Pd/C3N4-F)。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对材料结构进行表征,并通过气体质量流量计测试了催化剂的性能。 Pd/C3N4-F具有优异的催化FAD制氢性能,30 ℃下的初始TOF(总转换频率)值和质量比活性分别为1824 h-1和17.14 molH2/(gPd·h)。 对产物的气相色谱分析结果也表明没有副产物CO生成,表明催化剂具有优异的选择性。 并且随着温度的升高(30~40 ℃),催化剂性能逐渐提高。  相似文献   

18.
The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low‐cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g‐C3N4) from a low‐cost precursor, urea, is reported. The g‐C3N4 exhibits an extraordinary hydrogen‐evolution rate (ca. 20 000 μmol h?1 g?1 under full arc), which leads to a high turnover number (TON) of over 641 after 6 h. The reaction proceeds for more than 30 h without activity loss and results in an internal quantum yield of 26.5 % under visible light, which is nearly an order of magnitude higher than that observed for any other existing g‐C3N4 photocatalysts. Furthermore, it was found by experimental analysis and DFT calculations that as the degree of polymerization increases and the proton concentration decreases, the hydrogen‐evolution rate is significantly enhanced.  相似文献   

19.
通过简单调整g-C3N4的热聚合方式,一步构筑了超薄氮化碳纳米片,厚度在0.2~0.4 nm左右,分布均匀,比表面积可以达到99 m2·g-1。光催化性能测试结果表明,随着纳米片比表面积的增大,材料除了表现出优异的光解水性能以外,还在微生物领域表现出一定的抗菌性能,且活性随着聚合温度的升高、纳米片层的变薄而逐渐提高。  相似文献   

20.
陈艳  刘海波 《无机化学学报》2017,33(12):2255-2261
通过简单调整g-C_3N_4的热聚合方式,一步构筑了超薄氮化碳纳米片,厚度在0.2~0.4 nm左右,分布均匀,比表面积可以达到99 m~2·g~(-1)。光催化性能测试结果表明,随着纳米片比表面积的增大,材料除了表现出优异的光解水性能以外,还在微生物领域表现出一定的抗菌性能,且活性随着聚合温度的升高、纳米片层的变薄而逐渐提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号