首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amphiphilic hyperbranched polyprodrugs (DOX‐S‐S‐PEG) with drug repeat units in hydrophobic core linked by disulfide bonds were developed as drug self‐delivery systems for cancer therapy. The hydroxyl groups and the amine group in doxorubicin (DOX) were linked by 3,3′‐dithiodipropanoic acid as hydrophobic hyperbranched cores, then amino‐terminated polyethylene glycol monomethyl ether (mPEG‐NH2) as hydrophilic shell was linked to hydrophobic cores to form amphiphilic and glutathione (GSH)‐responsive micelle of hyperbranched polyprodrugs. The amphiphilic micelles can be disrupted under GSH (1 mg mL?1) circumstance. Cell viability of A549 cells and 293T cells was evaluated by CCK‐8 and Muse Annexin V & Dead Cell Kit. The disrupted polyprodrugs maintained drug activity for killing tumor cells. Meanwhile, the undisrupted polyprodrugs possessed low cytotoxicity to normal cells. The cell uptake experiments showed that the micelles of DOX‐S‐S‐PEG were taken up by A549 cells and distributed to cell nuclei. Thus, the drug self‐delivery systems with drug repeat units in hydrophobic cores linked by disulfide bonds showed significant special advantages: 1) facile one‐pot synthesis; 2) completely without toxic or non‐degradable polymers; 3) DOX itself functions as fluorescent labeled molecule and self‐delivery carrier; 4) drug with inactive form in hyperbranched cores and low cytotoxicity to normal cells. These advantages make them excellent drug self‐delivery systems for potential high efficient cancer therapy.  相似文献   

2.
Drug‐loaded nanoparticles (NPs) are of particular interest for efficient cancer therapy due to their improved drug delivery and therapeutic index in various types of cancer. However, the encapsulation of many chemotherapeutics into delivery NPs is often hampered by their unfavorable physicochemical properties. Here, we employed a drug reform strategy to construct a small library of SN‐38 (7‐ethyl‐10‐hydroxycamptothecin)‐derived prodrugs, in which the phenolate group was modified with a variety of hydrophobic moieties. This esterification fine‐tuned the polarity of the SN‐38 molecule and enhanced the lipophilicity of the formed prodrugs, thereby inducing their self‐assembly into biodegradable poly(ethylene glycol)‐block‐poly(d,l ‐lactic acid) (PEG‐PLA) nanoparticulate structures. Our strategy combining the rational engineering of prodrugs with the pre‐eminent features of conventionally used polymeric materials should open new avenues for designing more potent drug delivery systems as a therapeutic modality.  相似文献   

3.
Affinity‐based drug delivery systems utilize interactions between the therapeutic drug and the delivery system to manipulate drug loading and to control drug release. In this paper, affinity‐based drug delivery system syntheses, types of therapeutic factors delivered, and delivery system loading and release are discussed in detail. The paper is divided into three subsections, based on the type of delivery system: molecular imprinting systems, growth‐factor delivery, and cyclodextrin‐based delivery. The objective of this paper is to examine the current state of research, highlight the breakthroughs and challenges, point out potential impacts of this relatively new technology, and explore future developmental areas.

  相似文献   


4.
5.
Special delivery : Liposomal drug‐delivery systems in which prodrugs are activated specifically by disease‐associated enzymes have great potential for the treatment of severe diseases, such as cancer. A new type of phospholipid‐based prodrug has the ability to form stable small unilamellar vesicles (see picture). Activation of the prodrug vesicles by the enzyme sPLA2 initiates a cyclization reaction, which leads to the release of the drug.

  相似文献   


6.
7.
Overproduction of superoxide anion (O2.?), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.? to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD‐NAC , this persulfide donor reacts specifically with O2.?, decomposing to generate N‐acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self‐assembling peptide (Bz‐CFFE‐NH2) to make a superoxide‐responsive, persulfide‐donating peptide ( SOPD‐Pep ). Both SOPD‐NAC and SOPD‐Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD‐Pep mitigated toxicity induced by phorbol 12‐myristate 13‐acetate (PMA) more effectively than SOPD‐NAC and several control compounds, including common H2S donors.  相似文献   

8.
9.
With the advancement of polymer engineering, complex star‐shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine‐tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self‐organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star‐based nanocarriers. However, these star‐shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross‐linked together, there remain many structure–property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star‐shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates.  相似文献   

10.
First‐pass hepatic metabolism can significantly limit oral drug bioavailability. Drug transport from the intestine through the lymphatic system, rather than the portal vein, circumvents first‐pass metabolism. However, the majority of drugs do not have the requisite physicochemical properties to facilitate lymphatic access. Herein, we describe a prodrug strategy that promotes selective transport through the intestinal lymph vessels and subsequent release of drug in the systemic circulation, thereby enhancing oral bioavailability. Using testosterone (TST) as a model high first‐pass drug, glyceride‐mimetic prodrugs incorporating self‐immolative (SI) spacers, resulted in remarkable increases (up to 90‐fold) in TST plasma exposure when compared to the current commercial product testosterone undecanoate (TU). This approach opens new opportunities for the effective development of drugs where oral delivery is limited by first‐pass metabolism and provides a new avenue to enhance drug targeting to intestinal lymphoid tissue.  相似文献   

11.
Self‐immolative (SI) spacers are sophisticated chemical constructs designed for molecular delivery or material degradation. We describe herein a (S)‐2‐(aminomethyl)pyrrolidine SI spacer that is able to release different types of anticancer drugs (possessing either a phenolic or secondary and tertiary hydroxyl groups) through a fast cyclization mechanism involving carbamate cleavage. The high efficiency of drug release obtained with this spacer was found to be beneficial for the in vitro cytotoxic activity of protease‐sensitive prodrugs, compared with a commonly used spacer of the same class. These findings expand the repertoire of degradation machineries and are instrumental for the future development of highly efficient delivery platforms.  相似文献   

12.
Tumour hypoxia plays an important role in tumour progression and resistance to therapy. Under hypoxia unfolded proteins accumulate in the endoplasmic reticulum (ER) and this stress is relieved through the protein kinase R‐like ER kinase (PERK) signalling arm of the unfolded protein response (UPR). Targeting the UPR through PERK kinase inhibitors provides tumour growth inhibition, but also elicits on‐mechanism normal tissue toxicity. Hypoxia presents a target for tumour‐selective drug delivery using hypoxia‐activated prodrugs. We designed and prepared hypoxia‐activated prodrugs of modified PERK inhibitors using a 2‐nitroimidazole bioreductive trigger. The new inhibitors retained PERK kinase inhibitory activity and the corresponding prodrugs were strongly deactivated. The prodrugs were able to undergo fragmentation following radiolytic reduction, or bioreduction in HCT116 cells, to release their effectors, albeit inefficiently. We examined the effects of the prodrugs on PERK signalling in hypoxic HCT116 cells. This study has identified a 2‐substituted nitroimidazole carbamate prodrug with potential to deliver PERK inhibitors in a hypoxia‐selective manner.  相似文献   

13.
14.
The covalent conjugation of potent cytotoxic agents to either macromolecular carriers or small molecules represents a well-known approach to increase the therapeutic index of these drugs, thus improving treatment efficacy and minimizing side effects. In general, cytotoxic activity is displayed only upon cleavage of a specific chemical bond (linker) that connects the drug to the carrier. The perfect balance between the linker stability and its selective cleavage represents the key for success in these therapeutic approaches and the chemical toolbox to reach this goal is continuously expanding. In this Review article, we highlight recent advances on the different modalities to promote the selective release of cytotoxic agents, either by exploiting specific hallmarks of the tumor microenvironment (e.g. pH, enzyme expression) or by the application of external triggers (e.g. light and bioorthogonal reactions).  相似文献   

15.
Exosomes, a subgroup of extracellular vesicles, are important mediators of long‐distance intercellular communication and are involved in a diverse range of biological processes such as the transport of lipids, proteins, and nucleic acids. Researchers, seeing the problems caused by the toxic effects and clearance of synthetic nanoparticles, consider exosomes as an interesting alternative to such nanoparticles in the specific and controlled transport of drugs. In recent years, there have been remarkable advances in the use of exosomes in cancer therapeutics or for treating neurological diseases, among other applications. The objective of this work is to analyze studies focused on exosomes used in drug delivery system, present and future applications in this field of research are discussed based on the results obtained.  相似文献   

16.
The ever‐growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy.  相似文献   

17.
18.
Recently, polymer drug conjugates (PDCs) have attracted considerable attention in the treatment of cancer. In this work, a simple strategy has been developed to make PDCs of an antitumor alkylating agent, chlorambucil, using a biocompatible disulphide linker. Chlorambucil‐based chain transfer agent was used to prepare various homopolymers and block copolymers in a controlled fashion via reversible addition–fragmentation chain transfer polymerization. Chlorambucil conjugated block copolymer, poly(polyethylene glycol monomethyl ether methacrylate)‐b‐poly(methyl methacrylate), formed nanoaggregates in aqueous solutions, which are characterized by dynamic light scattering and field emission‐scanning electron microscopy. Finally, the simplicity of the design is exemplified by performing a release study of chlorambucil under reducing condition by using D,L‐dithiothreitol.

  相似文献   


19.
20.
The structural preciseness of dendrimers makes them perfect drug delivery carriers, particularly in the form of dendrimer–drug conjugates. Current dendrimer–drug conjugates are synthesized by anchoring drug and functional moieties onto the dendrimer peripheral surface. However, functional groups exhibiting the same reactivity make it impossible to precisely control the number and the position of the functional groups and drug molecules anchored to the dendrimer surface. This structural heterogeneity causes variable pharmacokinetics, preventing such conjugates to be translational. Furthermore, the highly hydrophobic drug molecules anchored on the dendrimer periphery can interact with blood components and alter the pharmacokinetic behavior. To address these problems, we herein report molecularly precise dendrimer–drug conjugates with drug moieties buried inside the dendrimers. Surprisingly, the drug release rates of these conjugates were tailorable by the dendrimer generation, surface chemistry, and acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号