首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

2.
The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed.  相似文献   

3.
4.
With the increasing demand for efficient and economic energy storage, Li‐S batteries have become attractive candidates for the next‐generation high‐energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li‐S batteries, this Review introduces the electrochemistry of Li‐S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li‐S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li‐S batteries with a metallic Li‐free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li‐S batteries serves as a prospective strategy for the industry in the future.  相似文献   

5.
A covalent triazine framework (CTF) with embedded polymeric sulfur and a high sulfur content of 62 wt % was synthesized under catalyst‐ and solvent‐free reaction conditions from 1,4‐dicyanobenzene and elemental sulfur. Our synthetic approach introduces a new way of preparing CTFs under environmentally benign conditions by the direct utilization of elemental sulfur. The homogeneous sulfur distribution is due to the in situ formation of the framework structure, and chemical sulfur impregnation within the micropores of CTF effectively suppresses the dissolution of polysulfides into the electrolyte. Furthermore, the triazine framework facilitates electron and ion transport, which leads to a high‐performance lithium–sulfur battery.  相似文献   

6.
7.
Porous materials have many structural advantages for energy storage and conversion devices such as rechargeable batteries, supercapacitors, and fuel cells. When applied as a host material in lithium‐sulfur batteries, porous silica materials with a pomegranate‐like architecture can not only act as a buffer matrix for accommodating a large volume change of sulfur, but also suppress the polysulfide shuttle effect. The porous silica/sulfur composite cathodes exhibit excellent electrochemical performances including a high specific capacity of 1450 mA h g?1, a reversible capacity of 82.9 % after 100 cycles at a rate of C/2 (1 C=1672 mA g?1) and an extended cyclability over 300 cycles at 1 C‐rate. Furthermore, the high polysulfide adsorption property of porous silica has been proven by ex‐situ analyses, showing a relationship between the surface area of silica and polysulfide adsorption ability. In particular, the modified porous silica/sulfur composite cathode, which is treated by a deep‐lithiation process in the first discharge step, exhibits a highly reversible capacity of 94.5 % at 1C‐rate after 300 cycles owing to a formation of lithiated‐silica frames and stable solid‐electrolyte‐interphase layers.  相似文献   

8.
9.
A stretchable wire‐shaped lithium‐ion battery is produced from two aligned multi‐walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg?1 or 17.7 mWh cm?3 and power densities of 880 W kg?1 or 0.56 W cm?3, which are an order of magnitude higher than the densities reported for lithium thin‐film batteries. These wire‐shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire‐shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large‐scale applications.  相似文献   

10.
Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur‐cathode materials in lithium–sulfur (Li–S) batteries. To develop long‐cycle Li–S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well‐defined surface sites; thereby improving cycling stability and allowing study of molecular‐level interactions. This challenge was addressed by introducing an organometallic molecular compound, ferrocene, as a new polysulfide‐confining agent. With ferrocene molecules covalently anchored on graphene oxide, sulfur electrode materials with capacity decay as low as 0.014 % per cycle were realized, among the best of cycling stabilities reported to date. With combined spectroscopic studies and theoretical calculations, it was determined that effective polysulfide binding originates from favorable cation–π interactions between Li+ of lithium polysulfides and the negatively charged cyclopentadienyl ligands of ferrocene.  相似文献   

11.
Solid‐state Li metal battery technology is attractive, owing to the high energy density, long lifespans, and better safety. A key obstacle in this technology is the unstable Li/solid‐state electrolyte (SSE) interface involving electrolyte reduction by Li. Herein we report a novel approach based on the use of a nanocomposite consisting of organic elastomeric salts (LiO‐(CH2O)n‐Li) and inorganic nanoparticle salts (LiF, ‐NSO2‐Li, Li2O), which serve as an interphase to protect Li10GeP2S12 (LGPS), a highly conductive but reducible SSE. The nanocomposite is formed in situ on Li via the electrochemical decomposition of a liquid electrolyte, thus having excellent chemical and electrochemical stability, affinity for Li and LGPS, and limited interfacial resistance. XPS depth profiling and SEM show that the nanocomposite effectively restrained the reduction of LGPS. Stable Li electrodeposition over 3000 h and a 200 cycle life for a full cell were achieved.  相似文献   

12.
Biomass‐derived porous carbon BPC‐700, incorporating micropores and small mesopores, was prepared through pyrolysis of banana peel followed by activation with KOH. A high specific BET surface area (2741 m2 g?1), large specific pore volume (1.23 cm3 g?1), and well‐controlled pore size distribution (0.6–5.0 nm) were obtained and up to 65 wt % sulfur content could be loaded into the pores of the BPC‐700 sample. When the resultant C/S composite, BPC‐700‐S65, was used as the cathode of a Li–S battery, a large initial discharge capacity (ca. 1200 mAh g?1) was obtained, indicating a good sulfur utilization rate. An excellent discharge capacity (590 mAh g?1) was also achieved for BPC‐700‐S65 at the high current rate of 4 C (12.72 mA cm?2), showing its extremely high rate capability. A reversible capacity of about 570 mAh g?1 was achieved for BPC‐700‐S65 after 500 cycles at 1 C (3.18 mA cm?2), indicating an outstanding cycling stability.  相似文献   

13.
Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field‐emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super‐high lithium‐storage capacity of 1580 mAh g?1 and a satisfactory cycling performance in lithium–sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene‐based nanocomposites can significantly improve the electrochemical performance of lithium–sulfur batteries.  相似文献   

14.
Safety concerns pose a significant challenge for the large‐scale employment of lithium–sulfur batteries. Extremely flammable conventional electrolytes and dendritic lithium deposition cause severe safety issues. Now, an intrinsic flame‐retardant (IFR) electrolyte is presented consisting of 1.1 m lithium bis(fluorosulfonyl)imide in a solvent mixture of flame‐retardant triethyl phosphate and high flashpoint solvent 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl (1:3, v/v) for safe lithium–sulfur (Li?S) batteries. This electrolyte exhibits favorable flame‐retardant properties and high reversibility of the lithium metal anode (Coulombic efficiency >99 %). This IFR electrolyte enables stable lithium plating/stripping behavior with micro‐sized and dense‐packing lithium deposition at high temperatures. When coupled with a sulfurized pyrolyzed poly(acrylonitrile) cathode, Li?S batteries deliver a high composite capacity (840.1 mAh g?1) and high sulfur utilization of 95.6 %.  相似文献   

15.
Lithium–sulfur batteries are amongst the most promising candidates to satisfy emerging energy‐storage demands. Suppression of the polysulfide shuttle while maintaining high sulfur content is the main challenge that faces their practical development. Here, we report that 2D early‐transition‐metal carbide conductive MXene phases—reported to be impressive supercapacitor materials—also perform as excellent sulfur battery hosts owing to their inherently high underlying metallic conductivity and self‐functionalized surfaces. We show that 70 wt % S/Ti2C composites exhibit stable long‐term cycling performance because of strong interaction of the polysulfide species with the surface Ti atoms, demonstrated by X‐ray photoelectron spectroscopy studies. The cathodes show excellent cycling performance with specific capacity close to 1200 mA h g?1 at a five‐hour charge/discharge (C/5) current rate. Capacity retention of 80 % is achieved over 400 cycles at a two‐hour charge/discharge (C/2) current rate.  相似文献   

16.
Lithium–sulfur (Li–S) batteries are highly regarded as the next‐generation energy‐storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg?1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high‐energy‐density Li–SPAN batteries. However, the instability of the Li‐metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li‐metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li‐metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li‐metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

17.
VO2‐decorated reduced graphene balls were prepared by a one‐pot spray‐pyrolysis process from a colloidal spray solution of well‐dispersed graphene oxide and ammonium vanadate. The graphene–VO2 composite powders prepared directly by spray pyrolysis had poor electrochemical properties. Therefore, the graphene–VO2 composite powders were transformed into a reduced graphene ball (RGB)–V2O5 (RGB) composite by post‐treatment at 300 °C in an air atmosphere. The TEM and dot‐mapping images showed a uniform distribution of V and C components, originating from V2O5 and graphene, consisting the composite. The graphene content of the RGB–V2O5 composite, measured by thermogravimetric analysis, was approximately 5 wt %. The initial discharge and charge capacities of RGB–V2O5 composite were 282 and 280 mA h g?1, respectively, and the corresponding Coulombic efficiency was approximately 100 %. On the other hand, the initial discharge and charge capacities of macroporous V2O5 powders were 205 and 221 mA h g?1, respectively, and the corresponding Coulombic efficiency was approximately 93 %. The RGB–V2O5 composite showed a better rate performance than the macroporous V2O5 powders.  相似文献   

18.
A three‐dimensional (3D) hierarchical carbon–sulfur nanocomposite that is useful as a high‐performance cathode for rechargeable lithium–sulfur batteries is reported. The 3D hierarchically ordered porous carbon (HOPC) with mesoporous walls and interconnected macropores was prepared by in situ self‐assembly of colloidal polymer and silica spheres with sucrose as the carbon source. The obtained porous carbon possesses a large specific surface area and pore volume with narrow mesopore size distribution, and acts as a host and conducting framework to contain highly dispersed elemental sulfur. Electrochemical tests reveal that the HOPC/S nanocomposite with well‐defined nanostructure delivers a high initial specific capacity up to 1193 mAh g?1 and a stable capacity of 884 mAh g?1 after 50 cycles at 0.1 C. In addition, the HOPC/S nanocomposite exhibits high reversible capacity at high rates. The excellent electrochemical performance is attributed exclusively to the beneficial integration of the mesopores for the electrochemical reaction and macropores for ion transport. The mesoporous walls of the HOPC act as solvent‐restricted reactors for the redox reaction of sulfur and aid in suppressing the diffusion of polysulfide species into the electrolyte. The “open” ordered interconnected macropores and windows facilitate transportation of electrolyte and solvated lithium ions during the charge/discharge process. These results show that nanostructured carbon with hierarchical pore distribution could be a promising scaffold for encapsulating sulfur to approach high specific capacity and energy density with long cycling performance.  相似文献   

19.
A rechargeable Li metal anode coupled with a high‐voltage cathode is a promising approach to high‐energy‐density batteries exceeding 300 Wh kg?1. Reported here is an advanced dual‐additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate‐based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F‐ and B‐containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg?1 at cell‐level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

20.
We report a rational design of a sulfur heterocyclic quinone (dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone=DTT) used as a cathode (uptake of four lithium ions to form Li4DTT) and a conductive polymer [poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)=PEDOT:PSS) used as a binder for a high‐performance rechargeable lithium‐ion battery. Because of the reduced energy level of the lowest unoccupied molecular orbital (LUMO) caused by the introduced S atoms, the initial Li‐ion intercalation potential of DTT is 2.89 V, which is 0.3 V higher than that of its carbon analog. Meanwhile, there is a noncovalent interaction between DTT and PEDOT:PSS, which remarkably suppressed the dissolution and enhanced the conductivity of DTT, thus leading to the great improvement of the electrochemical performance. The DTT cathode with the PEDOT:PSS binder displays a long‐term cycling stability (292 mAh g?1 for the first cycle, 266 mAh g?1 after 200 cycles at 0.1 C) and a high rate capability (220 mAh g?1 at 1 C). This design strategy based on a noncovalent interaction is very effective for the application of small organic molecules as the cathode of rechargeable lithium‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号